×

The inviscid limits to piecewise smooth solutions for a general parabolic system. (English) Zbl 1234.35198

Summary: We study the viscous limit problem for a general system of conservation laws. We prove that if the solution of the underlying inviscid problem is piecewise smooth with finitely many noninteracting shocks satisfying the entropy condition, then there exist solutions to the corresponding viscous system which converge to the inviscid solutions away from shock discontinuities at a rate of \(\epsilon^1\) as the viscosity coefficient \(\epsilon\) vanishes.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N17 Viscous-inviscid interaction for compressible fluids and gas dynamics
35D40 Viscosity solutions to PDEs
Full Text: DOI

References:

[1] D. Hoff and T. Liu, “The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data,” Indiana University Mathematics Journal, vol. 38, no. 4, pp. 861-915, 1989. · Zbl 0674.76047 · doi:10.1512/iumj.1989.38.38041
[2] J. Goodman and Z. Xin, “Viscous limits for piecewise smooth solutions to systems of conservation laws,” Archive for Rational Mechanics and Analysis, vol. 121, no. 3, pp. 235-265, 1992. · Zbl 0792.35115 · doi:10.1007/BF00410614
[3] S. Ma, “The inviscid limit for an inflow problem of compressible viscous gas in presence of both shocks and boundary layers,” Journal of Mathematical Analysis and Applications, vol. 378, no. 1, pp. 268-288, 2011. · Zbl 1429.76085 · doi:10.1016/j.jmaa.2010.12.037
[4] H. Wang, “Viscous limits for piecewise smooth solutions of the p-system,” Journal of Mathematical Analysis and Applications, vol. 299, no. 2, pp. 411-432, 2004. · Zbl 1062.35091 · doi:10.1016/j.jmaa.2004.03.064
[5] Y. Wang, “Zero dissipation limit of the compressible heat-conducting navier-stokes equations in the presence of the shock,” Acta Mathematica Scientia. Series B. English Edition, vol. 28, no. 4, pp. 727-748, 2008. · Zbl 1177.76092 · doi:10.1016/S0252-9602(08)60074-0
[6] S. Yu, “Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws,” Archive for Rational Mechanics and Analysis, vol. 146, no. 4, pp. 275-370, 1999. · Zbl 0935.35101 · doi:10.1007/s002050050143
[7] Z. Xin, “Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases,” Communications on Pure and Applied Mathematics, vol. 46, no. 5, pp. 621-665, 1993. · Zbl 0804.35108 · doi:10.1002/cpa.3160460502
[8] S. Jiang, G. Ni, and W. Sun, “Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids,” SIAM Journal on Mathematical Analysis, vol. 38, no. 2, pp. 368-384, 2006. · Zbl 1107.76063 · doi:10.1137/050626478
[9] H. Zeng, Asymptotic behavior of solutions to fluid dynamical equations, Doctoral thesis, The Chinese University of Hong Kong.
[10] A. Szepessy and K. Zumbrun, “Stability of rarefaction waves in viscous media,” Archive for Rational Mechanics and Analysis, vol. 133, no. 3, pp. 249-298, 1996. · Zbl 0861.35037 · doi:10.1007/BF00380894
[11] C. Mascia and K. Zumbrun, “Stability of large-amplitude shock profiles of general relaxation systems,” SIAM Journal on Mathematical Analysis, vol. 37, no. 3, pp. 889-913, 2006. · Zbl 1100.35069 · doi:10.1137/S0036141004435844
[12] C. Mascia and K. Zumbrun, “Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems,” Archive for Rational Mechanics and Analysis, vol. 172, no. 1, pp. 93-131, 2004. · Zbl 1058.35160 · doi:10.1007/s00205-003-0293-2
[13] K. Zumbrun and P. Howard, “Pointwise semigroup methods and stability of viscous shock waves,” Indiana University Mathematics Journal, vol. 47, no. 3, pp. 741-871, 1998. · Zbl 0928.35018 · doi:10.1512/iumj.1998.47.1604
[14] O. Guès, G. Métivier, M. Williams, and K. Zumbrun, “Existence and stability of multidimensional shock fronts in the vanishing viscosity limit,” Archive for Rational Mechanics and Analysis, vol. 175, no. 2, pp. 151-244, 2005. · Zbl 1072.35122 · doi:10.1007/s00205-004-0342-5
[15] F. Huang, Y. Wang, and T. Yang, “Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity,” Kinetic and Related Models, vol. 3, no. 4, pp. 685-728, 2010. · Zbl 1209.35098 · doi:10.3934/krm.2010.3.685
[16] S. Ma, “Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations,” Journal of Differential Equations, vol. 248, no. 1, pp. 95-110, 2010. · Zbl 1179.35220 · doi:10.1016/j.jde.2009.08.016
[17] S. Ma, “Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations,” Journal of Mathematical Analysis and Applications, vol. 387, no. 2, pp. 1033-1043, 2012. · Zbl 1235.35212 · doi:10.1016/j.jmaa.2011.10.010
[18] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1973. · Zbl 0268.35062
[19] H. O. Kreiss, “Initial boundary value problems for hyperbolic systems,” Communications on Pure and Applied Mathematics, vol. 23, pp. 277-298, 1970. · Zbl 0193.06902 · doi:10.1002/cpa.3160230304
[20] J. Rauch, “L2 is a continuable initial condition for Kreiss’ mixed problems,” Communications on Pure and Applied Mathematics, vol. 25, pp. 265-285, 1972. · Zbl 0226.35056 · doi:10.1002/cpa.3160250305
[21] S. Kawashima, Systems of hyperbolic-parabolic composite type, with appli-cations to the equations of magneto-hydrodynamics, Doctoral thesis, Kyoto University, 1983.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.