×

Concentration inequalities for Gibbs measures. (English) Zbl 1233.60010

The author considers log-Sobolev inequalities and their relationship with concentration properties on high dimensional spaces, namely, unbounded spin systems on the \(d\)-dimensional lattice with interactions that increase slower than quadratic are investigated. Assuming that the one-site measure satisfies a modified log-Sobolev inequality with a constant uniformly on the boundary conditions, the conditions are determined so that the infinite-dimensional Gibbs measure satisfies a concentration and a Talagrand type inequality. Also, a modified log-Sobolev type concentration property is obtained under weaker conditions referring to the log-Sobolev inequalities for the boundary free measure.

MSC:

60E15 Inequalities; stochastic orderings
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] DOI: 10.1006/jfan.1994.1154 · Zbl 0846.46019 · doi:10.1006/jfan.1994.1154
[2] Ané C., Panoramas et Synthèses. Soc. Math 10, in: Sur les inégalités de Sobolev logarithmiques (2000)
[3] DOI: 10.1007/BFb0073872 · doi:10.1007/BFb0073872
[4] DOI: 10.1007/BFb0075847 · doi:10.1007/BFb0075847
[5] DOI: 10.4064/sm159-3-9 · Zbl 1072.60008 · doi:10.4064/sm159-3-9
[6] DOI: 10.1007/s11118-008-9093-5 · Zbl 1170.26010 · doi:10.1007/s11118-008-9093-5
[7] Beckner W., Proc. Amer. Math. Soc. 105 pp 397–
[8] DOI: 10.1007/BF01208480 · Zbl 0495.60057 · doi:10.1007/BF01208480
[9] DOI: 10.1007/s004400050090 · Zbl 0878.60014 · doi:10.1007/s004400050090
[10] DOI: 10.1007/PL00001645 · Zbl 0969.26019 · doi:10.1007/PL00001645
[11] Bobkov S. G., Mem. Amer. Math. Soc. 176 pp 1–
[12] DOI: 10.1006/jfan.1999.3419 · Zbl 0972.82035 · doi:10.1006/jfan.1999.3419
[13] Deuschel J. D., Large Deviations (1989)
[14] DOI: 10.1007/BF01075682 · Zbl 0192.61702 · doi:10.1007/BF01075682
[15] DOI: 10.1007/s00440-005-0432-9 · Zbl 1080.26010 · doi:10.1007/s00440-005-0432-9
[16] Gentil I., Rev. Mat. Iber. 23 pp 235–
[17] DOI: 10.1006/jfan.2000.3692 · Zbl 0992.60091 · doi:10.1006/jfan.2000.3692
[18] DOI: 10.2307/2373688 · Zbl 0318.46049 · doi:10.2307/2373688
[19] DOI: 10.1007/978-3-540-36107-7_1 · doi:10.1007/978-3-540-36107-7_1
[20] DOI: 10.1007/s11118-009-9126-8 · Zbl 1180.22012 · doi:10.1007/s11118-009-9126-8
[21] DOI: 10.1007/BFb0107213 · doi:10.1007/BFb0107213
[22] DOI: 10.1007/BFb0096511 · doi:10.1007/BFb0096511
[23] DOI: 10.1016/j.jfa.2006.10.002 · Zbl 1109.60013 · doi:10.1016/j.jfa.2006.10.002
[24] Papageorgiou I., Markov Proc. Relat. Fields 3 pp 447–
[25] Preston C. J., Springer Lect. Notes in Math 534, in: Random Fields (1976) · Zbl 0335.60074 · doi:10.1007/BFb0080563
[26] Rao M. M., Theory of Orlicz Spaces (1991) · Zbl 0724.46032
[27] DOI: 10.1016/0022-1236(85)90079-5 · Zbl 0578.46028 · doi:10.1016/0022-1236(85)90079-5
[28] DOI: 10.1007/BF02699376 · Zbl 0864.60013 · doi:10.1007/BF02699376
[29] DOI: 10.1007/BF02249265 · Zbl 0859.46030 · doi:10.1007/BF02249265
[30] DOI: 10.1007/s004400050235 · Zbl 0948.60095 · doi:10.1007/s004400050235
[31] DOI: 10.1007/BF00398360 · Zbl 0717.47015 · doi:10.1007/BF00398360
[32] DOI: 10.1007/BF02102414 · Zbl 0844.46050 · doi:10.1007/BF02102414
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.