×

Discrete network models of interacting nephrons. (English) Zbl 1233.37059

Summary: The kidney is one of the major organs involved in whole-body homeostasis, and exhibits many of the properties of a complex system. The functional unit of the kidney is the nephron, a complex, segmented tube into which blood plasma is filtered and its composition adjusted. Although the behaviour of individual nephrons can fluctuate widely and even chaotically, the behaviour of the kidney remains stable.
We investigate how the filtration rate of a multi-nephron system is affected by interactions between nephrons. We introduce a discrete-time multi-nephron network model. The tubular mechanisms that have the greatest effect on filtration rate are the transport of sodium and water, consequently our model attempts to capture these mechanisms. Multi-nephron systems also incorporate two competing coupling mechanisms-vascular and hemodynamic-that enforce in-phase and anti-phase synchronisations respectively. Using a two-nephron model, we demonstrate how changing the strength of the hemodynamic coupling mechanism and changing the arterial blood pressure have equivalent effects on the system. The same two-nephron system is then used to demonstrate the interactions that arise between the two coupling mechanisms. We conclude by arguing that our approach is scalable to large numbers of nephrons, based on the performance characteristics of the model.

MSC:

37N25 Dynamical systems in biology
92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
Full Text: DOI

References:

[1] Shalizi, C. R., Methods and techniques of complex systems science: An overview, Complex Systems Sci. Biomedi., 33-114 (2006)
[2] Bar-Yam, Y., Dynamics of Complex Systems (2003), Westview Press
[3] Noble, D., The rise of computational biology, Nat. Rev. Mol. Cell Biol., 3, 6, 459-463 (2002)
[4] Székely, G., An approach to the complexity of the brain, Brain Res. Bull., 55, 1, 11-28 (2001)
[5] Simon, H. A., The architecture of complexity, Proc. Am. Philos. Soc., 106, 6, 467-482 (1962)
[6] Weinstein, A. M., Mathematical models of renal fluid and electrolyte transport: Acknowledging our uncertainty, AJP Renal Physiol., 284, 5, 871-884 (2003)
[7] Holstein-Rathlou, N. H.; Marsh, D. J., A dynamic model of the tubuloglomerular feedback mechanism, AJP Renal Physiol., 258, 5 Pt 2, 1448-1459 (1990)
[8] Holstein-Rathlou, N. H.; Yip, K. P.; Sosnovtseva, O. V.; Mosekilde, E., Synchronization phenomena in nephron-nephron interaction, Chaos, 11, 2, 417-426 (2001)
[9] Pitman, E. B.; Zaritski, R. M.; Kesseler, K. J.; Moore, L. C.; Layton, H. E., Feedback-mediated dynamics in two coupled nephrons, Bull. Math. Biol., 66, 6, 1463-1492 (2004) · Zbl 1334.92121
[10] Marsh, D. J.; Sosnovtseva, O. V.; Mosekilde, E.; Holstein-Rathlou, N. H., Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree, Chaos, 17, 1, 015114 (2007) · Zbl 1159.37369
[11] Bohr, H.; Jensen, K. S.; Petersen, T.; Rathjen, B.; Mosekilde, E., Parallel computer simulation of nearest-neighbour interaction in a system of nephrons, Parallel Comput., 12, 1, 113-120 (1989) · Zbl 0675.92009
[12] Postnov, D. E.; Sosnovtseva, O. V.; Scherbakov, P.; Mosekilde, E., Multimode dynamics in a network with resource mediated coupling, Chaos, 18, 1, 015114 (2008)
[13] Thomas, S. R.; Layton, A. T.; Layton, H. E.; Moore, L. C., Kidney modeling: Status and perspectives, Proc. IEEE, 94, 4, 740-752 (2006)
[14] Hervy, S.; Thomas, S. R., Inner medullary lactate production and urine-concentrating mechanism: A flat medullary model, AJP Renal Physiol., 284, 1, 65-81 (2003)
[15] Thomas, S. R., Inner medullary lactate production and accumulation: A vasa recta model, AJP Renal Physiol., 279, 3, 468-481 (2000)
[16] Wolfram, S., A New Kind of Science (2002), Wolfram Media · Zbl 1022.68084
[17] Barfred, M.; Mosekilde, E.; Holstein-Rathlou, N. H., Bifurcation analysis of nephron pressure and flow regulation, Chaos, 6, 3, 280-287 (1996)
[18] Rashidi, A.; Khodarahmi, I., Mathematical modelling of the course of chronic renal failure, Nephrol. Dial Transplant., 21, 11, 3344-3345 (2006)
[19] Stephenson, J. L., Urinary Concentration and Dilution: Models (1992), Oxford University Press: Oxford University Press New York, (chapter 30) pp. 1349-1408
[20] Schmidt-Nielsen, B.; O’Dell, R., Structure and concentrating mechanism in the mammalian kidney, Am. J. Physiol., 200, 6, 1119-1124 (1961)
[21] Sosnovtseva, O. V.; Postnova, D. E.; Mosekilde, E.; Holstein-Rathlou, N. H., Synchronization of tubular pressure oscillations in interacting nephrons, Chaos, Solitons Fractals, 15, 2, 343-369 (2003)
[22] Schnermann, J.; Persson, A. E.G.; Ågerup, B., Tubuloglomerular feedback: Nonlinear relation between glomerular hydrostatic pressure and loop of henle perfusion rate, J. Clin. Invest., 52, 4, 862-869 (1973)
[23] Schnermann, J.; Wright, F. S.; Davis, J. M.; Stackelberg, W.v.; Grill, G., Regulation of superficial nephron filtration rate by tubulo-glomerular feedback, Pflügers Archiv, 318, 2, 147-175 (1970)
[24] Adamatzky, A.; Wuensche, A.; Lacy Costello, B. De, Glider-based computing in reaction-diffusion hexagonal cellular automata, Chaos, Solitons Fractals, 27, 2, 287-295 (2006) · Zbl 1085.68096
[25] Wuensche, A., Self-reproduction by glider collisions: The beehive rule, (Pollack, J.; etal., ALife9 Proceedings (2004), MIT Press), 286-291
[26] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47 (2002) · Zbl 1205.82086
[27] Dorogovtsev, S. N.; Mendes, J. F.F., Evolution of Networks: From Biological Nets to the Internet and WWW (2003), Oxford University Press · Zbl 1010.05073
[28] Park, J.; Newman, M. E.J., The statistical mechanics of networks, Phys. Rev. E, 70, 066117 (2004)
[29] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 167 (2003) · Zbl 1029.68010
[30] Wuensche, A., Basins of attraction in network dynamics: A conceptual framework for biomolecular networks, (Schlosser, G.; Wagner, G. P., Modularity in Development and Evolution (2004), Chicago University Press), 288-311, (Chapter 13)
[31] Jeong, H.; Mason, S. P.; Barabási, A.-L.; Oltvai, Z. N., Lethality and centrality in protein networks, Nature, 411, 41-42 (2001)
[32] Marsh, D. J.; Sosnovtseva, O. V.; Chon, K. H.; Holstein-Rathlou, N. H., Nonlinear interactions in renal blood flow regulation, AJP Regul. Integr. Comp. Physiol., 288, 5, 1143-1159 (2005)
[33] Layton, H. E.; Pitman, E. B.; Moore, L. C., Bifurcation analysis of TGF-mediated oscillations in SNGFR, AJP Renal Physiol., 261, 5 Pt 2, 904-919 (1991)
[34] Shannon, C. E., Communication in the presence of noise, Proc. IEEE, 86, 2, 447-457 (1998)
[35] Sosnovtseva, O. V.; Pavlov, A. N.; Mosekilde, E.; Yip, K. P.; Holstein-Rathlou, N. H.; Marsh, D. J., Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats, AJP Renal Physiol., 293, 5, 1545-1555 (2007)
[36] Komlosi, P.; Fintha, A.; Bell, P. D., Current mechanisms of macula densa cell signalling, Acta Physiol. Scand., 181, 4, 463-469 (2004)
[37] A.D.A.M. Medical Encyclopedia. A.D.A.M. Inc, Atlanta, 2005; A.D.A.M. Medical Encyclopedia. A.D.A.M. Inc, Atlanta, 2005
[38] Vander, A. J., Renal Physiology (1995), McGraw-Hill
[39] Layton, A. T.; Layton, H. E., A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla: I. Formulation and base-case results, AJP Renal Physiol., 58, 6, 1346-1366 (2005)
[40] Layton, A. T.; Layton, H. E., A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla: II. Parameter sensitivity and tubular inhomogeneity, AJP Renal Physiol., 58, 6, 1367-1381 (2005)
[41] Lory, P., Effectiveness of a salt transport cascade in the renal medulla: Computer simulations, AJP Renal Physiol., 252, 6, 1095-1102 (1987)
[42] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, J. Vouillon, The Object Caml system 3.10. INRIA, May 2007; X. Leroy, D. Doligez, J. Garrigue, D. Rémy, J. Vouillon, The Object Caml system 3.10. INRIA, May 2007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.