×

The Cuntz semigroup of continuous functions into certain simple \(C^*\)-algebras. (English) Zbl 1232.46058

Summary: This paper contains computations of the Cuntz semigroup of separable \(C^*\)-algebras of the form \(C_{0}(X, A)\), where \(A\) is a unital, simple, \(\mathcal Z\)-stable ASH algebra. The computations describe the Cuntz semigroup in terms of Murray-von Neumann semigroups of \(C(K, A)\) for compact subsets \(K\) of \(X\). In particular, the computation shows that the Elliott invariant is functorially equivalent to the invariant given by the Cuntz semigroup of \(C(\mathbb T, A)\). These results are a contribution towards the goal of using the Cuntz semigroup in the classification of well-behaved non-simple \(C^*\)-algebras.

MSC:

46L35 Classifications of \(C^*\)-algebras
47L40 Limit algebras, subalgebras of \(C^*\)-algebras

References:

[1] DOI: 10.1216/rmjm/1181073108 · Zbl 0719.46040 · doi:10.1216/rmjm/1181073108
[2] Blackadar B., Mathematical Sciences Research Institute Publications 5, in: K-Theory for Operator Algebras (1998) · Zbl 0913.46054
[3] DOI: 10.1016/0022-1236(82)90009-X · Zbl 0513.46047 · doi:10.1016/0022-1236(82)90009-X
[4] DOI: 10.2140/pjm.1977.71.335 · Zbl 0362.46042 · doi:10.2140/pjm.1977.71.335
[5] DOI: 10.1016/j.jfa.2008.12.004 · Zbl 1173.46038 · doi:10.1016/j.jfa.2008.12.004
[6] Brown N. P., J. Reine Angew. Math. 621 pp 191–
[7] Ciuperca A., J. Operator Theory 64 pp 155–
[8] Coward K. T., J. Reine Angew. Math. 623 pp 161–
[9] DOI: 10.1007/BF01421922 · Zbl 0354.46043 · doi:10.1007/BF01421922
[10] Edwards D. A., C. R. Acad. Sci. Paris 261 pp 2798–
[11] DOI: 10.1007/s00222-006-0033-y · Zbl 1129.46051 · doi:10.1007/s00222-006-0033-y
[12] DOI: 10.4153/CMB-2000-050-1 · Zbl 0978.46037 · doi:10.4153/CMB-2000-050-1
[13] Goodearl K. R., Mathematical Surveys and Monographs 20, in: Partially Ordered Abelian Groups with Interpolation (1986)
[14] DOI: 10.4153/CJM-1986-032-0 · Zbl 0608.16027 · doi:10.4153/CJM-1986-032-0
[15] DOI: 10.1090/S0002-9947-1969-0237687-X · doi:10.1090/S0002-9947-1969-0237687-X
[16] DOI: 10.1016/j.aim.2008.07.011 · Zbl 1162.46033 · doi:10.1016/j.aim.2008.07.011
[17] Q. Lin and N. C. Phillips, Operator Algebras and Applications, Adv. Stud. Pure Math 38 (Math. Soc., Japan, Tokyo, 2004) pp. 107–133.
[18] Ng P. W., C. R. Math. Acad. Sci. Soc. R. Can. 28 pp 91–
[19] DOI: 10.1007/s00208-007-0093-3 · Zbl 1161.46035 · doi:10.1007/s00208-007-0093-3
[20] DOI: 10.1090/S0002-9947-07-03849-4 · Zbl 1139.19004 · doi:10.1090/S0002-9947-07-03849-4
[21] DOI: 10.1090/S0002-9947-07-03850-0 · Zbl 1125.46044 · doi:10.1090/S0002-9947-07-03850-0
[22] Rieffel M. A., Proc. London Math. Soc. (3) 46 pp 301–
[23] DOI: 10.1016/0022-1236(92)90106-S · Zbl 0810.46067 · doi:10.1016/0022-1236(92)90106-S
[24] DOI: 10.1142/S0129167X04002661 · Zbl 1077.46054 · doi:10.1142/S0129167X04002661
[25] DOI: 10.1017/CBO9780511623806 · doi:10.1017/CBO9780511623806
[26] DOI: 10.1017/S0143385709000042 · Zbl 1194.37003 · doi:10.1017/S0143385709000042
[27] DOI: 10.1007/s00220-008-0665-4 · Zbl 1173.46043 · doi:10.1007/s00220-008-0665-4
[28] DOI: 10.1090/S0002-9947-07-04173-6 · Zbl 1120.46046 · doi:10.1090/S0002-9947-07-04173-6
[29] DOI: 10.1073/pnas.0903629106 · Zbl 1203.46046 · doi:10.1073/pnas.0903629106
[30] DOI: 10.1007/s00222-009-0216-4 · Zbl 1194.46104 · doi:10.1007/s00222-009-0216-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.