×

Generalized hypercenters in infinite groups. (English) Zbl 1232.20039

Let \(G\) be a periodic group. An element \(x\) of \(G\) is said to be ‘\(M\)-permutable’ if the cyclic subgroup \(\langle x\rangle\) is permutable with all maximal \(p\)-subgroups of \(G\) for all prime numbers \(p\). The ‘generalized centre’ of \(G\) is the subgroup \(gz(G)\) generated by all \(M\)-permutable elements of \(G\). The ‘generalized upper central series’ and the ‘generalized hypercentre’ \(gz_\infty(G)\) can then be defined in analogy to the ordinary upper central series and hypercentre.
In the paper under review, the authors study properties of the generalized hypercentre of periodic groups. In particular, the main result states that if \(G\) is a hyperfinite group (i.e., if \(G\) has an ascending normal series with finite factors) and \(H\) is a hypercyclic subgroup of \(G\), then the product \(Hgz_\infty(G)\) is hypercyclic. In particular the generalized hypercentre of any hyperfinite group is hypercyclic.

MSC:

20F19 Generalizations of solvable and nilpotent groups
20F50 Periodic groups; locally finite groups
20F14 Derived series, central series, and generalizations for groups
20E07 Subgroup theorems; subgroup growth
20E15 Chains and lattices of subgroups, subnormal subgroups
Full Text: DOI

References:

[1] Agrawal R. K., Proc. Amer. Math. Soc. 54 pp 13–
[2] DOI: 10.1080/00927870600860742 · Zbl 1114.20018 · doi:10.1080/00927870600860742
[3] DOI: 10.1081/AGB-100002181 · Zbl 0991.20018 · doi:10.1081/AGB-100002181
[4] DOI: 10.1002/mana.200510618 · Zbl 1176.20016 · doi:10.1002/mana.200510618
[5] Beidleman J. C., J. Group Theory 4 pp 199– · Zbl 0154.27103
[6] DOI: 10.1515/9783110870138 · doi:10.1515/9783110870138
[7] DOI: 10.1007/BF01195169 · Zbl 0102.26802 · doi:10.1007/BF01195169
[8] DOI: 10.1098/rspa.1961.0035 · Zbl 0102.26205 · doi:10.1098/rspa.1961.0035
[9] DOI: 10.1090/S0002-9939-1970-0268267-1 · doi:10.1090/S0002-9939-1970-0268267-1
[10] Mukherjee N. P., Proc. Amer. Math. Soc. 32 pp 22–
[11] Russo F. G., JP Algebra Number Theory 12 pp 31–
[12] Weinstein M., Between Nilpotent and Solvable (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.