×

Quintic surfaces with maximum and other Picard numbers. (English) Zbl 1232.14022

This paper is concerned with exhibiting complex algebraic surfaces of general type having prescribed Picard number. For a complex algebraic surface \(X\), the Picard number satisfies the Lefschetz bound \(\rho(X)\leq h^{1,1}(X)\).
The paper focuses on quintic surfaces \(X\) in \({\mathbb{P}}^3\), where the Hodge numbers are given by \(h^{2,0}(X)=4=h^{0,2}(X)\) and \(h^{1,1}(X)=45\). The first question dealt with in this article is to realize quintic surface \(X\) whose Picard number attains the maximum value, namely \(45\).
Theorem 1. The surface \(Y\subset{\mathbb{P}}^3\) defined by the equation \[ yzw^3+xyz^3+wxy^3+zwx^3=0 \] has exactly four \(A_9\) singularities at the points where three coordinates vanish simultaneously. It minimal resolution \(X\) has maximum Picard number \(\rho(X)=45\).
Three proofs are presented. The first proof exploits the fact that \(X\) is a Galois quotient of some Fermat surface. The second proof exhibit rational curves on \(X\) that generate the Néron-Severi group \(\mathrm{NS}(X)\) up to finite index, and the third proof uses the cyclic group of order \(15\) acting on \(X\) to show that the \({\mathbb{Q}}\)-transcendental cycles form a one-dimensional vector space over the cyclotomic field \({\mathbb{Q}}(\zeta_{15})\).
The method of the first proof realizes some given numbers as Picard numbers.
Theorem 2. If \(r=1,5,13\) or an odd integer between \(17\) and \(45\), there there exists a quintic surface \(X\) with \(\rho(X)=r\).
As a byproduct of the first and the second proofs, the zeta-function of \(X\) can be computed.

MSC:

14J29 Surfaces of general type
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14J50 Automorphisms of surfaces and higher-dimensional varieties

References:

[1] J. Bertin and G. Elencwajg, Configurations de coniques et surfaces avec un nombre de Picard maximum, Math. Z., 194 (1987), 245-258. · Zbl 0612.14031 · doi:10.1007/BF01161972
[2] R. Donagi, Generic Torelli for projective hypersurfaces, Compositio Math., 50 (1983), 325-353. · Zbl 0598.14007
[3] H. Inose, Defining equations of singular \(K3\) surfaces and a notion of isogeny, In: Proceedings of the International Symposium on Algebraic Geometry, Kyoto Univ., Kyoto, 1977, Kinokuniya Book Store, Tokyo, 1978, pp.,495-502. · Zbl 0411.14009
[4] O. Le Barre, private correspondence to Ulf Persson, 1982.
[5] R. Livné, On Certain Covers of the Universal Elliptic Curve, PhD thesis, Harvard University, 1981.
[6] M. Nori, On certain elliptic surfaces with maximal Picard number, Topology, 24 (1985), 175-186. · Zbl 0575.14034 · doi:10.1016/0040-9383(85)90054-0
[7] U. Persson, Horikawa Surfaces with maximal Picard number, Math. Ann., 259 (1982), 287-312. · Zbl 0466.14010 · doi:10.1007/BF01456942
[8] X. Roulleau, The Fano surface of the Klein cubic threefold, J. Math. Kyoto Univ., 49 (2009), 113-129. · Zbl 1207.14045
[9] X. Roulleau, Fano surfaces with 12 or 30 elliptic curves, Michigan Math. J., 60 (2011), 313-329. · Zbl 1225.14029 · doi:10.1307/mmj/1310667979
[10] M. Schütt, \(K3\) surfaces of Picard rank 20 over \(\mathbf{Q}\), Algebra Number Theory, 4 (2010), 335-356. · Zbl 1190.14034
[11] M. Schütt, T. Shioda and R. van Luijk, Lines on the Fermat quintic surface, to appear in J. Number Theory, 130 (2010), 1939-1963. · Zbl 1194.14057 · doi:10.1016/j.jnt.2010.01.008
[12] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59. · Zbl 0226.14013 · doi:10.2969/jmsj/02410020
[13] T. Shioda, On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 725-734. · Zbl 0567.14021
[14] T. Shioda, On the Picard number of a complex projective variety, Ann. Sci. École Norm. Sup. (4), 14 (1981), 303-321. · Zbl 0498.14018
[15] T. Shioda, An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math., 108 (1986), 415-432. · Zbl 0602.14033 · doi:10.2307/2374678
[16] T. Shioda and H. Inose, On Singular \(K3\) Surfaces, In: Complex Analysis and Algebraic Geometry (eds. W. L. Baily Jr. and T. Shioda), Iwanami Shoten, Tokyo, 1977, pp.,119-136. · doi:10.1017/CBO9780511569197.010
[17] T. Shioda and N. Mitani, Singular abelian surfaces and binary quadratic forms, In: Classification of Algebraic Varieties and Compact Complex Manifolds, Lecture Notes inMath., 412 (1974), 259-287. · Zbl 0302.14011 · doi:10.1007/BFb0066163
[18] J. Tate, Algebraic cycles and poles of zeta functions, In: Arithmetical Algebraic Geometry, Proc. Conf. Purdue Univ., 1963, Harper & Row, 1965, pp.,93-110. · Zbl 0213.22804
[19] T. Terasoma, Complete intersections with middle Picard number 1 defined over \(\mathbf{Q}\), Math. Z., 189 (1985), 289-296. · Zbl 0579.14006 · doi:10.1007/BF01175050
[20] R. van Luijk, \(K3\) surfaces with Picard number one and infinitely many rational points, Algebra Number Theory, 1 (2007), 1-15. · Zbl 1123.14022 · doi:10.2140/ant.2007.1.1
[21] A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., 55 (1949), 497-508. · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.