×

Characterizing complex particle morphologies through shape matching: descriptors, applications, and algorithms. (English) Zbl 1231.82003

Summary: Many standard structural quantities, such as order parameters and correlation functions, exist for common condensed matter systems, such as spherical and rod-like particles. However, these structural quantities are often insufficient for characterizing the unique and highly complex structures often encountered in the emerging field of nano and microscale self-assembly, or other disciplines involving complex structures such as computational biology. Computer science algorithms known as “shape matching” methods pose a unique solution to this problem by providing robust metrics for quantifying the similarity between pairs of arbitrarily complex structures. This pairwise matching operation, either implicitly or explicitly, lies at the heart of most standard structural characterization schemes for particle systems. By substituting more robust “shape descriptors” into these schemes we extend their applicability to structures formed from more complex building blocks. Here, we describe several structural characterization schemes and shape descriptors that can be used to obtain various types of structural information about particle systems. We demonstrate the application of shape matching algorithms to a variety of example problems, for topics including local and global structure identification and classification, automated phase diagram mapping, and the construction of spatial and temporal correlation functions. The methods are applicable to a wide range of systems, both simulated and experimental, provided particle positions are known or can be accurately imaged.

MSC:

82-08 Computational methods (statistical mechanics) (MSC2010)
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics

References:

[1] Flory, P. J., Phase equilibria in solutions of rod-like particles, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 234, 1196, 73-89 (1956)
[2] Onsager, L., The effects of shape on the interaction of colloidal particles, Annals of the New York Academy of Sciences, 51, Molecular Interaction, 627-659 (1949)
[3] Bernal, J. D., A geometrical approach to the structure of liquids, Nature, 183, 141-147 (1959)
[4] Larson, R. G., The Structure and Rheology of Complex Fluids (2000), Oxford University Press: Oxford University Press U.S.A · Zbl 0992.76009
[5] Mermin, N. D., Crystalline order in two dimensions, Physical Review, 176, 1, 250-254 (1968)
[6] ten Wolde, P. R.; Ruiz-Montero, M. J.; Frenkel, D., Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling, The Journal of Chemical Physics, 104, 9932-9947 (1996)
[7] Honeycutt, J. D.; Andersen, H. C., Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, Journal of Physical Chemistry, 91, 19, 4950-4963 (1987)
[8] Harris, A. B.; Kamien, R. D.; Lubensky, T. C., Molecular chirality and chiral parameters, Reviews of Modern Physics, 71, 1745-1757 (1999)
[9] Halperin, B. I.; Nelson, D. R., Theory of two-dimensional melting, Physical Review Letters, 41, 2, 121-124 (1978)
[10] Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M., Bond-orientational order in liquids and glasses, Physical Review B, 28, 2, 784-805 (1983)
[11] Glotzer, S. C.; Solomon, M. J., Anisotropy of building blocks and their assembly into complex structures, Nature Materials, 6, 557-562 (2007)
[12] Glotzer, S. C.; Horsch, M. A.; Iacovella, C. R.; Zhang, Z.; Chan, E. R.; Zhang, X., Self-assembly of anisotropic tethered nanoparticle shape amphiphiles, Current Opinion in Colloid and Interface Science, 10, 287-295 (2005)
[13] Nie, Z.; Petukhova, A.; Kumacheva, E., Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nature Nanotechnology, 5, 1, 15-25 (2010)
[14] Euliss, L. E.; DuPont, J. A.; Gratton, S.; DeSimone, J., Imparting size, shape, and composition control of materials for nanomedicine, Chemical Society Reviews, 35, 11, 1095-1104 (2006)
[15] Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C., What controls the optical properties of DNA-linked gold nanoparticle assemblies?, Journal of the American Chemical Society, 122, 19, 4640-4650 (2000)
[16] Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V.; Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F., Anisotropic self-assembly of spherical polymer-grafted nanoparticles, Nature Materials, 8, 4, 354-359 (2009)
[17] Nie, Z. H.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M., Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers, Nature Materials, 6, 609-614 (2007)
[18] Kempa, K.; Kimball, B.; Rybczynski, J.; Huang, Z. P.; Wu, P. F.; Steeves, D.; Sennett, M.; Giersig, M.; Rao, D. V.G. L.N.; Carnahan, D. L.; Wang, D. Z.; Lao, J. Y.; Li, W. Z.; Ren, Z. F., Photonic crystals based on periodic arrays of aligned carbon nanotubes, Nano Letters, 3, 1, 13-18 (2002)
[19] Haji-Akbari, A.; Engel, M.; Keys, A. S.; Zheng, X.; Petschek, R. G.; Palffy-Muhoray, P.; Glotzer, S. C., Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra, Nature, 462, 7274, 773-777 (2009)
[20] Tang, Z. Y.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A., Self-assembly of CdTe nanocrystals into free-floating sheets, Science, 314, 274-278 (2006)
[21] Zhang, Z.; Tang, Z. Y.; Kotov, N. A.; Glotzer, S. C., Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets, Nano Letters, 7, 1670-1675 (2007)
[22] Zhang, Z.; Horsch, M. A.; Lamm, M. H.; Glotzer, S. C., Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly, Nano Letters, 3, 10, 1341-1346 (2003)
[23] Srivastava, S.; Santos, A.; Critchley, K.; Kim, K.-S.; Podsiadlo, P.; Sun, K.; Lee, J.; Xu, C.; Lilly, G. D.; Glotzer, S. C.; Kotov, N. A., Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons, Science, 327, 5971, 1355-1359 (2010)
[24] Ahniyaz, A.; Sakamoto, Y.; Bergström, L., Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes, Proceedings of the National Academy of Sciences, 104, 45, 17570-17574 (2007)
[25] Zhang, X.; Zhang, Z.; Glotzer, S. C., Simulation study of dipole-induced self-assembly of nanocubes, The Journal of Physical Chemistry C, 111, 11, 4132-4137 (2007)
[26] John, B. S.; Escobedo, F. A., Phase behavior of colloidal hard tetragonal parallelepipeds (cuboids): a Monte Carlo simulation study, The Journal of Physical Chemistry B, 109, 48, 23008-23015 (2005)
[27] Zhang, G.; Wang, D. Y.; Mohwald, H., Decoration of microspheres with gold nanodots-giving colloidal spheres valences, Angewandte Chemie-International Edition, 44, 47, 7767-7770 (2005)
[28] Zhang, Z.; Glotzer, S. C., Self-assembly of patchy particles, Nano Letters, 4, 1407-1413 (2004)
[29] Zhang, Z.; Keys, A. S.; Chen, T.; Glotzer, S. C., Self-assembly of patchy particles into diamond structures through molecular mimicry, Langmuir, 21, 25, 11547-11551 (2005)
[30] DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner, B. T.; Uzun, O.; Wunsch, B. H.; Stellacci, F., Divalent metal nanoparticles, Science, 315, 358-361 (2007)
[31] Jackson, A. M.; Myerson, J. W.; Stellacci, F., Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles, Nature Materials, 3, 330-336 (2004)
[32] Park, J.-W.; Thomas, E. L., Anisotropic micellar nanoobjects from reactive liquid crystalline rodcoil diblock copolymers, Macromolecules, 37, 10, 3532-3535 (2004)
[33] Reister, E.; Fredrickson, G. H., Phase behavior of a blend of polymer-tethered nanoparticles with diblock copolymers, The Journal of Chemical Physics, 123, 21, 214903 (2005)
[34] Jayaraman, A.; Schweizer, K. S., Structure and assembly of dense solutions and melts of single tethered nanoparticles, The Journal of Chemical Physics, 128, 16 (2008)
[35] Waddon, A. J.; Zheng, L.; Farris, R. J.; Coughlin, E. B., Nanostructured polyethylene-POSS copolymers: control of crystallization and aggregation, Nano Letters, 2, 1149-1155 (2002)
[36] Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M., Self-assembly of nanoparticles into structured spherical and network aggregates, Nature, 404, 6779, 746-748 (2000)
[37] Daniel, M. C.; Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, 104, 293-346 (2004)
[38] Collier, C. P.; Vossmeyer, T.; Heath, J. R., Nanocrystal superlattices, Annual Review of Physical Chemistry, 49, 1, 371-404 (1998)
[39] Reinhard, B. M.; Siu, M.; Agarwal, H.; Alivisatos, A. P.; Liphardt, J., Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles, Nano Letters, 5, 11, 2246-2252 (2005)
[40] Iacovella, C. R.; Glotzer, S. C., Complex crystal structures formed by the self-assembly of ditethered nanospheres, Nano Letters, 9, 3, 1206-1211 (2009)
[41] Iacovella, C. R.; Glotzer, S. C., Phase behavior of ditethered nanospheres, Soft Matter, 5, 4492-4498 (2009)
[42] Nguyen, T. D.; Zhang, Z.; Glotzer, S. C., Molecular simulation study of self-assembly of tethered v-shaped nanoparticles, The Journal of Chemical Physics, 129, 244903 (2008)
[43] Jankowski, E.; Glotzer, S. C., A comparison of new methods for generating energy-minimizing configurations of patchy particles, The Journal of Chemical Physics, 131, 104104 (2009)
[44] Nguyen, T. D.; Glotzer, S. C., Switchable helical structures formed by the hierarchical self-assembly of laterally tethered nanorods, Small, 5, 18, 2092-2098 (2009)
[45] Hershko, A.; Ciechanover, A., The ubiquitin system, Annual Review of Biochemistry, 67, 1, 425-479 (1998)
[46] Pu, Q.; Leng, Y.; Cummings, P. T., Rate-dependent energy release mechanism of gold nanowires under elongation, Journal of the American Chemical Society, 130, 17907-17912 (2008)
[47] C.R. Iacovella, W.R. French, P.T. Cummings, The formation of polyhedral structures in elongated gold nanowires, preprint, 2010.; C.R. Iacovella, W.R. French, P.T. Cummings, The formation of polyhedral structures in elongated gold nanowires, preprint, 2010.
[48] Blank, V. D.; Buga, S. G.; Serebryanaya, N. R.; Dubitsky, G. A.; Mavrin, B. N.; Popov, M. Y.; Bagramov, R. H.; Prokhorov, V. M.; Sulyanov, S. N.; Kulnitskiy, B. A.; Tatyanin, Y. V.; Zhou, L.; Zhou, Y.; Wales, D. J.; Hodges, M. P., Global minima of water clusters (H2O)\(n, n\) less than or equal to 21, described by an empirical potential, Chemical Physics Letters, 286, 1-2, 65-72 (1998)
[49] A.S. Keys, C.R. Iacovella, Particle shape matching library and examples, 2010. http://glotzerlab.engin.umich.edu/shapematching.html; A.S. Keys, C.R. Iacovella, Particle shape matching library and examples, 2010. http://glotzerlab.engin.umich.edu/shapematching.html
[50] Veltkamp, R. C.; Hagedoorn, M., State of the art in shape matching, Principles of Visual Information Retrieval, 87 (2001)
[51] Lu, X.; Colbry, D.; Jain, A. K., Three-dimensional model based face recognition, Pattern Recognition, 1, 362-366 (2004)
[52] Ma, L.; Tan, T.; Wang, Y.; Zhang, D., Efficient iris recognition by characterizing key local variations, IEEE Transactions on Image Processing, 13, 6, 739-750 (2004)
[53] Lesk, A. M., A toolkit for computational molecular biology. II. On the optimal superposition of two sets of coordinates, Acta Crystallographica Section A: Foundations of Crystallography, 42, 2, 110-113 (1986)
[54] Krissinel, E.; Henrick, K., Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallographica Section D: Biological Crystallography, 60, 12, 2256-2268 (2004)
[55] Blankenbecler, R.; Ohlsson, M.; Peterson, C.; Ringnér, M., Matching protein structures with fuzzy alignments, Proceedings of the National Academy of Sciences, 100, 21, 11936 (2003) · Zbl 1065.92019
[56] Yeh, J. S.; Chen, D. Y.; Chen, B. Y.; Ouhyoung, M., A web-based three-dimensional protein retrieval system by matching visual similarity, Bioinformatics, 21, 13, 3056 (2005)
[57] Venkatraman, V.; Sael, L.; Kihara, D., Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors, Cell Biochemistry and Biophysics, 54, 1, 23-32 (2009)
[58] Mak, L.; Grandison, S.; Morris, R. J., An extension of spherical harmonics to region-based rotationally invariant descriptors for molecular shape description and comparison, Journal of Molecular Graphics and Modelling, 26, 7, 1035-1045 (2008)
[59] Grandison, S.; Roberts, C.; Morris, R. J., The application of 3D Zernike moments for the description of model-free molecular structure, functional motion, and structural reliability, Journal of Computational Biology, 16, 3, 487-500 (2009)
[60] Iacovella, C. R.; Keys, A. S.; Horsch, M. A.; Glotzer, S. C., Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase, Physical Review E, 75, 040801 (2007), R
[61] Iacovella, C. R.; Horsch, M. A.; Glotzer, S. C., Local ordering of polymer-tethered nanospheres and nanorods and the stabilization of the double gyroid phase, The Journal of Chemical Physics, 129, 044902 (2008)
[62] Keys, A. S.; Glotzer, S. C., How do quasicrystals grow?, Physical Review Letters, 99, 23, 235503 (2007)
[63] Keys, A. S.; Iacovella, C. R.; Glotzer, S. C., Characterizing structure through shape matching and applications to self-assembly, Annual Reviews of Condensed Matter Physics, 2, 263-285 (2011)
[64] A.S. Keys, C.R. Iacovella, S.C. Glotzer, Harmonic shape descriptors applied to characterizing assembled structures ArXiv preprint 1012. 4527 (2011).; A.S. Keys, C.R. Iacovella, S.C. Glotzer, Harmonic shape descriptors applied to characterizing assembled structures ArXiv preprint 1012. 4527 (2011).
[65] Wales, D. J.; Doye, J. P.; Dullweber, A.; Hodges, M. P.; Naumkin, F. Y.; Calvo, F.; Hernández-Rojas, J.; Middleton, T. F., The cambridge cluster database (2001)
[66] Calvo, F.; Doye, J. P.K.; Wales, D. J., Quantum partition functions from classical distributions: Application to rare-gas clusters, The Journal of Chemical Physics, 114, 7312 (2001)
[67] Boas, M. L., Mathematical Methods in the Physical Sciences (2002), John Wiley & Sons: John Wiley & Sons New York
[68] Nelson, D. R.; Halperin, B. I., Dislocation-mediated melting in two dimensions, Physical Review B, 19, 5, 2457-2484 (1979)
[69] Iyer, N.; Jayanti, S.; Lou, K.; Kalyanaraman, Y.; Ramani, K., Three-dimensional shape searching: state-of-the-art review and future trends, Computer-Aided Design, 37, 5, 509-530 (2005)
[70] Tangelder, J. W.H.; Veltkamp, R. C., A survey of content based 3d shape retrieval methods, Multimedia Tools and Applications, 39, 3, 441-471 (2008)
[71] Zhang, D.; Lu, G., Review of shape representation and description techniques, Pattern Recognition, 37, 1, 1-19 (2004)
[72] Besl, P. J.; McKay, H. D., A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 2, 239-256 (1992)
[73] Dunteman, G. H., Principal Components Analysis (1989), Sage Publications, Inc.: Sage Publications, Inc. Newbury Park, CA, USA
[74] Chui, H.; Rangarajan, A., A new point matching algorithm for non-rigid registration, Computer Vision and Image Understanding, 89, 2-3, 114-141 (2003) · Zbl 1053.68123
[75] Ankerst, M.; Kastenmuller, G.; Kriegel, H. P.; Seidl, T., 3d shape histograms for similarity search and classification in spatial databases, Lecture Notes in Computer Science, 207-228 (1999)
[76] Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D., Shape distributions, ACM Transactions on Graphics (TOG), 21, 4, 807-832 (2002) · Zbl 1331.68256
[77] Zahn, C. T.; Roskies, R. Z., Fourier descriptors for plane closed curves, IEEE Transactions on Computers, 21, 3, 269-281 (1972) · Zbl 0231.68042
[78] M. Kazhdan, T. Funkhouser, S. Rusinkiewicz, Rotation invariant spherical harmonic representation of 3d shape descriptors, in: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, 2003, p. 164.; M. Kazhdan, T. Funkhouser, S. Rusinkiewicz, Rotation invariant spherical harmonic representation of 3d shape descriptors, in: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, 2003, p. 164.
[79] Khotanzad, A.; Hong, Y. H., Invariant image recognition by Zernike moments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 5, 489-497 (1990)
[80] M. Novotni, R. Klein, 3D Zernike descriptors for content based shape retrieval, in: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, ACM New York, NY, USA, 2003, pp. 216-225.; M. Novotni, R. Klein, 3D Zernike descriptors for content based shape retrieval, in: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, ACM New York, NY, USA, 2003, pp. 216-225.
[81] Varadan, P.; Solomon, M. J., Direct visualization of long-range heterogeneous structure in dense colloidal gels, Langmuir, 19, 3, 509-512 (2003)
[82] Crocker, J. C.; Grier, D. G., Methods of digital video microscopy for colloidal studies, Journal of Colloid and Interface Science, 179, 298-310 (1996)
[83] Kuhn, H. W., The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, 2, 1-2, 83-97 (1955) · Zbl 0143.41905
[84] Sadourny, R., Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Monthly Weather Review, 100, 136-144 (1972)
[85] Hayashida, K.; Dotera, T.; Takano, A.; Matsushita, Y., Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers, Physical Review Letters, 98 (2007)
[86] Iacovella, C. R.; Horsch, M. A.; Zhang, Z.; Glotzer, S. C., Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants, Langmuir, 21, 21, 9488-9494 (2005)
[87] D.V. Vranic, D. Saupe, J. Richter, Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics, in: IEEE 2001 Workshop Multimedia Signal Processing, Citeseer, 2001, pp. 293-298.; D.V. Vranic, D. Saupe, J. Richter, Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics, in: IEEE 2001 Workshop Multimedia Signal Processing, Citeseer, 2001, pp. 293-298.
[88] Auer, S.; Frenkel, D., Numerical prediction of absolute crystallization rates in hard-sphere colloids, The Journal of Chemical Physics, 120, 3015-3029 (2004)
[89] Belongie, S.; Malik, J.; Puzicha, J., Shape matching and object recognition using shape contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, 509-522 (2002)
[90] D.Y. Chen, X.P. Tian, Y.T. Shen, M. Ouhyoung, On visual similarity based 3d model retrieval, in: Computer Graphics Forum, vol. 22, Amsterdam, North Holland, 1982, 2003, pp. 223-232.; D.Y. Chen, X.P. Tian, Y.T. Shen, M. Ouhyoung, On visual similarity based 3d model retrieval, in: Computer Graphics Forum, vol. 22, Amsterdam, North Holland, 1982, 2003, pp. 223-232.
[91] Lagomarsino, M. C.; Dogterom, M.; Dijkstra, M., Isotropic-nematic transition of long, thin, hard spherocylinders confined in a quasi-two-dimensional planar geometry, The Journal of Chemical Physics, 119, 3535-3540 (2003)
[92] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W., Metallic phase with long-range orientational order and no translational symmetry, Physical Review Letters, 53, 20, 1951-1953 (1984)
[93] Roth, J.; Denton, A. R., Solid-phase structures of the Dzugutov pair potential, Physical Review E, 61, 6, 6845-6857 (2000)
[94] Kob, W.; Andersen, H. C., Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function, Physical Review E, 51, 5, 4626-4641 (1995)
[95] R.C. Veltkamp, Shape matching: Similarity measures and algorithms, in: International Conference on Shape Modeling and Applications, S.M.I 2001, 2001, pp. 188-197.; R.C. Veltkamp, Shape matching: Similarity measures and algorithms, in: International Conference on Shape Modeling and Applications, S.M.I 2001, 2001, pp. 188-197.
[96] Gasser, U.; Schofield, A.; Weitz, D. A., Local order in a supercooled colloidal fluid observed by confocal microscopy, Journal of Physics: Condensed Matter, 15, S375 (2003)
[97] Solomon, T.; Solomon, M. J., Stacking fault structure in shear-induced colloidal crystallization, The Journal of Chemical Physics, 124, 13, 134905 (2006)
[98] Goede, A.; Preissner, R.; Froemmel, C., Voronoi cell: new method for allocation of space among atoms: elimination of avoidable errors in calculation of atomic volume and density, Journal of Computational Chemistry, 18, 9, 1113-1123 (1997)
[99] Iacovella, C. R.; Horsch, M. A.; Zhang, Z.; Glotzer, S. C., Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants, Langmuir, 21, 21, 9488-9494 (2005)
[100] Halperin, B. I.; Lubensky, T. C.; Ma, S. K., First-order phase transitions in superconductors and smectic – a liquid crystals, Physical Review Letters, 32, 6, 292-295 (1974)
[101] McMillan, W. L., Simple molecular model for the smectic a phase of liquid crystals, Physical Review A, 4, 3, 1238-1246 (1971)
[102] Radhakrishnan, R.; Gubbins, K. E.; Sliwinska-Bartkowiak, M., Effect of the fluid-wall interaction on freezing of confined fluids: toward the development of a global phase diagram, The Journal of Chemical Physics, 112, 24, 11048-11057 (2000)
[103] Cummings, P. T.; Docherty, H.; Iacovella, C. R.; Singh, J. K., Phase transitions in nanoconfined fluids: the evidence from simulation and theory, AIChE Journal, 56, 4, 842-848 (2010)
[104] Yamaki, M.; Higo, J.; Nagayama, K., Size-dependent separation of colloidal particles in two-dimensional convective self-assembly, Langmuir, 11, 8, 2975-2978 (1995)
[105] Bladon, P.; Griffin, A. C., Self-assembly in living nematics, Macromolecules, 26, 24, 6604-6610 (1993)
[106] Torrie, G. M.; Valleau, J. P., Non-physical sampling distributions in Monte-Carlo free-energy estimation – umbrella sampling, Journal of Computational Physics, 23, 2, 187-199 (1977)
[107] Dellago, C.; Bolhuis, P. G.; Csajka, F. S.; Chandler, D., Transition path sampling and the calculation of rate constants, The Journal of Chemical Physics, 108, 1964 (1998)
[108] Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L., Transition path sampling: throwing ropes over rough mountain passes, in the dark, Annual Review of Physical Chemistry, 53, 291-318 (2002)
[109] Allen, R. J.; Frenkel, D.; ten Wolde, P. R., Forward flux sampling-type schemes for simulating rare events: efficiency analysis, The Journal of Chemical Physics, 124, 194111 (2006)
[110] Laio, A.; Parrinello, M.; minima, Escaping free-energy, Proceedings of the National Academy of Sciences, 99, 20, 12562-12566 (2002)
[111] Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M., Icosahedral bond orientational order in supercooled liquids, Physical Review Letters, 47, 18, 1297-1300 (1981)
[112] de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals (1995), Oxford University Press: Oxford University Press USA
[113] Freiser, M. J., Ordered states of a nematic liquid, Physical Review Letters, 24, 19, 1041-1043 (1970)
[114] Kemp, J. P.; Chen, J. Z.Y., Helical structures in proteins, Biomacromolecules, 2, 2, 389-401 (2001)
[115] Kawasaki, T.; Araki, T.; Tanaka, H., Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids, Physical Review Letters, 99, 21, 215701 (2007)
[116] Shintani, H.; Tanaka, H., Frustration on the way to crystallization in glass, Nature Physics, 2, 3, 200-206 (2006)
[117] Barnett, R. N.; Landman, U., Cluster-derived structures and conductance fluctuations in nanowires, Nature, 387, 6635, 788-791 (1997)
[118] Allen, M. P.; Warren, M. A., Simulation of structure and dynamics near the isotropic-nematic transition, Physical Review Letters, 78, 7, 1291-1294 (1997)
[119] Perera, D. N.; Harrowell, P., Stability and structure of a supercooled liquid mixture in two dimensions, Physical Review E, 59, 5, 5721-5743 (1999)
[120] Widmer-Cooper, A.; Harrowell, P.; Fynewever, H., How reproducible are dynamic heterogeneities in a supercooled liquid?, Physical Review Letters, 93, 13, 135701 (2004)
[121] Abate, A. R.; Durian, D. J., Approach to jamming in an air-fluidized granular bed, Physical Review E, 74, 3, 31308 (2006)
[122] Keys, A. S.; Abate, A. R.; Glotzer, S. C.; Durian, D. J., Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nature Physics, 3, 4, 260-264 (2007)
[123] ten Wolde, P. R.; Frenkel, D., Enhancement of protein crystal nucleation by critical density fluctuations, Science, 277, 5334, 1975 (1997)
[124] Cacciuto, A.; Auer, S.; Frenkel, D., Onset of heterogeneous crystal nucleation in colloidal suspensions, Nature, 428, 6981, 404-406 (2004)
[125] Gasser, U.; Weeks, E. R.; Schofield, A.; Pusey, P. N.; Weitz, D. A., Real-space imaging of nucleation and growth in colloidal crystallization, Science, 292, 5515, 258 (2001)
[126] Shereda, L. T.; Larson, R. G.; Solomon, M. J., Local stress control of spatiotemporal ordering of colloidal crystals in complex flows, Physical Review Letters, 101, 3, 38301 (2008)
[127] Engel, M.; Trebin, H. R., Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential, Physical Review Letters, 98, 22, 225505 (2007)
[128] Shilane, P.; Min, P.; Kazhdan, M.; Funkhouser, T., The Princeton Shape Benchmark (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.