×

From the icosahedron to natural triangulations of \(\mathbb {C}\mathbb{P}^{2}\) and \(S ^{2}\times S ^{2}\). (English) Zbl 1231.51016

The authors present two constructions: a 10-vertex triangulation of the complex projective plane (as a subcomplex of the join of the sphere and the real projective plane), and a 12-vertex triangulation of \(S^2 \times S^2\). The automorphism group is \(A_4\) in the first construction and the Schur double cover of \(S_5\) in the second construction. Both constructions have an intimate relationship with the icosahedron, in some sense analogous to the (well-known) fact that the minimal triangulation of the real projective plane arises naturally from the icosahedron.

MSC:

51M20 Polyhedra and polytopes; regular figures, division of spaces
52B10 Three-dimensional polytopes

References:

[1] Akhmedov, A., Park, B.D.: Exotic smooth structures on S2×S2, 12 pp. (2010). arXiv:1005.3346v5 · Zbl 1206.57029
[2] Arnoux, P., Marin, A.: The Kühnel triangulation of the complex projective plane from the view-point of complex crystallography (part II). Mem. Fac. Sci. Kyushu Univ. Ser. A 45, 167-244 (1991) · Zbl 0753.52002 · doi:10.2206/kyushumfs.45.167
[3] Bagchi, B., Datta, B.: On Kühnel’s 9-vertex complex projective plane. Geom. Dedic. 50, 1-13 (1994) · Zbl 0808.52013 · doi:10.1007/BF01263646
[4] Bagchi, B., Datta, B.: A short proof of the uniqueness of Kühnel’s 9-vertex complex projective plane. Adv. Geom. 1, 157-163 (2001) · Zbl 0978.57021 · doi:10.1515/advg.2001.011
[5] Bagchi, B., Datta, B.: Combinatorial triangulations of homology spheres. Discrete Math. 305, 1-17 (2005) · Zbl 1085.57019 · doi:10.1016/j.disc.2005.06.026
[6] Bagchi, B., Datta, B.: Lower bound theorem for normal pseudomanifolds. Exp. Math. 26, 327-351 (2008) · Zbl 1165.52011
[7] Banchoff, T.F., Kühnel, W.: Equilibrium triangulations of the complex projective plane. Geom. Dedic. 44, 413-433 (1992) · Zbl 0769.52013 · doi:10.1007/BF00181398
[8] Bing, R. H.; Saaty, T. L. (ed.), Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, No. II, 93-128 (1964), New York · Zbl 0126.39104
[9] Brehm, U.: Private communication (2010)
[10] Brehm, U., Kühnel, W.: Combinatorial manifolds with few vertices. Topology 26, 465-473 (1987) · Zbl 0681.57009 · doi:10.1016/0040-9383(87)90042-5
[11] Kühnel, W., Banchoff, T.F.: The 9-vertex complex projective plane. Math. Intell. 5(3), 11-22 (1983) · Zbl 0534.51009 · doi:10.1007/BF03026567
[12] Kühnel, W., Laßmann, G.: The unique 3-neighbourly 4-manifold with few vertices. J. Comb. Theory Ser. A 35, 173-184 (1983) · Zbl 0526.52008 · doi:10.1016/0097-3165(83)90005-5
[13] Lawson, T.: Splitting S4 on ℝP2 via the branched cover of ℂP2 over S4. Proc. Am. Math. Soc. 86, 328-330 (1982) · Zbl 0505.57001
[14] Lutz, F.H.: Triangulated Manifolds with Few Vertices and Vertex-Transitive Group Actions. Shaker Verlag, Aachen (1999). Thesis (D 83, TU Berlin) · Zbl 0977.57030
[15] Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 7 pp. (2003). arXiv:math/0307245v1 · Zbl 1130.53003
[16] Saveliev, N.: Lectures on the Topology of 3-Manifolds: An Introduction to the Casson Invariant. Walter de Gruyter, Berlin (1999) · Zbl 0932.57001
[17] Sparla, E.: An upper and a lower bound theorem for combinatorial 4-manifolds. Discrete Comput. Geom. 19, 575-593 (1998) · Zbl 0960.57019 · doi:10.1007/PL00009369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.