×

Parameter-dependent Lyapunov functions for state-derivative feedback control in polytopic linear systems. (English) Zbl 1230.93074

Summary: In some practical problems, for instance, the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Using Linear Matrix Inequalities (LMIs), and applying the reciprocal projection lemma in a Parameter-Dependent Lyapunov Function (PDLF), this article proposes a method for the design of state-derivative feedback applied to uncertain linear systems. The control design aims the system stabilization without and with decay rate restriction. When considering only the system stability, the proposed methodology becomes practically equivalent to the Common Quadratic Lyapunov Function (CQLF) technique. Otherwise, when the decay rate is taken in account, the proposed methodology is shown to be less conservative. Numerical examples illustrate its efficiency.

MSC:

93D15 Stabilization of systems by feedback
93B52 Feedback control
93C05 Linear systems in control theory
93D30 Lyapunov and storage functions

Software:

LMI toolbox
Full Text: DOI

References:

[1] DOI: 10.1049/ip-cta:20040660 · doi:10.1049/ip-cta:20040660
[2] Abdelaziz THS, in 16th IFAC World Congress (2005)
[3] DOI: 10.1109/9.975496 · Zbl 1003.93016 · doi:10.1109/9.975496
[4] DOI: 10.1080/00207170701283899 · Zbl 1133.93022 · doi:10.1080/00207170701283899
[5] Boyd S, Linear Matrix Inequalities in Systems and Control Theory, Studies in Applied Mathematics , 15, 2. ed. (1994)
[6] DOI: 10.1016/S0005-1098(97)00011-3 · Zbl 0887.93036 · doi:10.1016/S0005-1098(97)00011-3
[7] Cardim R, in 3rd IFAC Symposium on System, Structure and Control, (Vol. 1) pp 135– (2007)
[8] Cardim R, Systems, Structure and Control pp 1– (2008)
[9] DOI: 10.1016/j.sysconle.2005.02.015 · Zbl 1129.93490 · doi:10.1016/j.sysconle.2005.02.015
[10] de Oliveira MC, Perspectives in Robust Control, Lecture Notes in Control and Information Sciences pp 241– (2001)
[11] DOI: 10.1111/j.1467-8667.2005.00396.x · doi:10.1111/j.1467-8667.2005.00396.x
[12] DOI: 10.1155/2010/927362 · Zbl 1191.93071 · doi:10.1155/2010/927362
[13] DOI: 10.1080/00207170801942188 · Zbl 1154.93366 · doi:10.1080/00207170801942188
[14] Gahinet P, LMI Control Toolbox – For Use with MATLAB (1995)
[15] DOI: 10.1109/TAC.2006.884958 · Zbl 1366.93139 · doi:10.1109/TAC.2006.884958
[16] DOI: 10.1049/ip-cta:20045041 · doi:10.1049/ip-cta:20045041
[17] DOI: 10.1016/j.jprocont.2007.06.003 · doi:10.1016/j.jprocont.2007.06.003
[18] DOI: 10.1061/(ASCE)0893-1321(2002)15:1(1) · doi:10.1061/(ASCE)0893-1321(2002)15:1(1)
[19] DOI: 10.1155/2010/123751 · Zbl 1222.93188 · doi:10.1155/2010/123751
[20] DOI: 10.1016/j.ins.2008.12.002 · Zbl 1156.93355 · doi:10.1016/j.ins.2008.12.002
[21] DOI: 10.1049/iet-cta.2009.0210 · doi:10.1049/iet-cta.2009.0210
[22] DOI: 10.1016/j.automatica.2009.02.023 · Zbl 1166.93344 · doi:10.1016/j.automatica.2009.02.023
[23] DOI: 10.1016/j.sysconle.2005.05.003 · Zbl 1129.93485 · doi:10.1016/j.sysconle.2005.05.003
[24] Reithmeier E, Archive of Applied Mechanics 72 pp 856– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.