×

A discrete time neural network model with spiking neurons. II: Dynamics with noise. (English) Zbl 1230.92012

[For part I see ibid. 56, No. 3, 311–345 (2008; Zbl 1145.37342).]
Summary: We provide rigorous and exact results characterizing the statistics of spike trains in a network of leaky integrate-and-fire neurons, where time is discrete and where neurons are submitted to noise, without restrictions on the synaptic weights. We show the existence and uniqueness of an invariant measure of Gibbs type and discuss its properties. We also discuss Markovian approximations and relate them to the approaches currently used in computational neuroscience to analyse experimental spike train statistics.

MSC:

92C20 Neural biology
60J99 Markov processes

Citations:

Zbl 1145.37342

References:

[1] Adrian E, Zotterman Y (1926) The impulses produced by sensory nerve endings. Part II: the response of a single end organ. J Physiol (Lond) 61: 151–171
[2] Benda J, Herz A (2003) A universal model for spike-frequency adaptation. Neural Computtion 15(11): 2523–2564 · Zbl 1052.92010 · doi:10.1162/089976603322385063
[3] Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25: 2312–2321 · doi:10.1523/JNEUROSCI.4795-04.2005
[4] Bowen R (2008) Equilibrium states and the ergodic theory of Anosov diffeomorphisms, 2nd revised version. In: Lecture notes in mathematics, vol 470. Springer-Verlag · Zbl 1172.37001
[5] Bressaud X, Fernandez R, Galves A (1999) Decay of correlations for non hölderian dynamics. A coupling approach. Electron J Probab 4(3): 1–19 · Zbl 0917.58017 · doi:10.1214/EJP.v4-40
[6] Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11: 1621–1671 · doi:10.1162/089976699300016179
[7] Cessac B (2008) A discrete time neural network model with spiking neurons I. Rigorous results on the spontaneous dynamics. J Math Biol 56(3): 311–345 · Zbl 1145.37342 · doi:10.1007/s00285-007-0117-3
[8] Cessac B, Sepulchre J (2004) Stable resonances and signal propagation in a chaotic network of coupled units. Phys Rev E 70: 056111 · doi:10.1103/PhysRevE.70.056111
[9] Cessac B, Sepulchre J (2006) Transmitting a signal by amplitude modulation in a chaotic network. Chaos 16: 013104 · Zbl 1144.37335 · doi:10.1063/1.2126813
[10] Cessac B, Viéville T (2008) On dynamics of integrate-and-fire neural networks with adaptive conductances. Front Neurosci 2(2): 1–20
[11] Cessac B, Rostro-Gonzalez H, Vasquez J, Viéville T (2009) How gibbs distribution may naturally arise from synaptic adaptation mechanisms: a model based argumentation. J Stat Phys 136(3): 565–602 · Zbl 1177.82090 · doi:10.1007/s10955-009-9786-1
[12] Chazottes J (1999) Entropie relative, dynamique symbolique et turbulence. PhD thesis, Université de Provence-Aix Marseille I
[13] Chazottes J, Keller G (2009) Pressure and equilibrium states in ergodic theory. In: Ergodic theory. Encyclopedia of complexity and system science. Springer, Berlin (to appear)
[14] Coelho Z, Quas A (1998) Criteria for d-continuity. Trans Am Math Soc 350(8): 3257–3268 · Zbl 0907.28013 · doi:10.1090/S0002-9947-98-01923-0
[15] Crook S, Ermentrout G, Bower J (1998) Spike frequency adaptation affects the synchronization properties of networks of cortical oscillators. Neural Comput 10(4): 837–854 · doi:10.1162/089976698300017511
[16] Csiszar I (1984) Sanov property, generalized i-projection and a conditional limit theorem. Ann Prob 12(3): 768–793 · Zbl 0544.60011 · doi:10.1214/aop/1176993227
[17] Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge · Zbl 1051.92010
[18] Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput 13(6): 1285–1310 · Zbl 0963.68647 · doi:10.1162/08997660152002861
[19] Gantmacher FR (1998) The theory of matrices. AMS Chelsea Publishing, Providence · Zbl 0927.15002
[20] Gerstner W, Kistler W (2002a) Spiking neuron models. Cambridge University Press, Cambridge · Zbl 1100.92501
[21] Gerstner W, Kistler WM (2002b) Mathematical formulations of hebbian learning. Biol Cybern 87: 404–415 · Zbl 1105.92313 · doi:10.1007/s00422-002-0353-y
[22] Grammont F, Riehle A (1999) Precise spike synchronization in monkey motor cortex involved in preparation for movement. Exp Brain Res 128: 118–122 · doi:10.1007/s002210050826
[23] Grammont F, Riehle A (2003) Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time. Biol Cybern 88: 360–373 · Zbl 1085.92004 · doi:10.1007/s00422-002-0385-3
[24] Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5): 1063–1070 · doi:10.1109/TNN.2004.832719
[25] Jaynes E (1957) Information theory and statistical mechanics. Phys Rev 106: 620 · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[26] Johansson A, Oberg A (2003) Square summability of variations of g-functions and uniqueness of g-measure. Math Res Lett 10: 587–601 · Zbl 1051.28008 · doi:10.4310/MRL.2003.v10.n5.a3
[27] Jolivet R, Lewis T, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92: 959–976 · doi:10.1152/jn.00190.2004
[28] Jolivet R, Rauch A, Lscher H-R, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21: 35–49 · Zbl 1118.92013 · doi:10.1007/s10827-006-7074-5
[29] Keane M (1972) Strongly mixing g-measures. Invent Math 16: 309–324 · Zbl 0241.28014 · doi:10.1007/BF01425715
[30] Keller G (1998) Equilibrium states in ergodic theory. Cambridge University Press, Cambridge · Zbl 0896.28006
[31] Kirst C, Geisel T, Timme M (2009) Sequential desynchronization in networks of spiking neurons with partial reset. Phys Rev Lett 102: 068101 · doi:10.1103/PhysRevLett.102.068101
[32] Kitchens BP (1998) Symbolic dynamics: one-sided, two-sided and countable state Markov shifts. Springer-Verlag, New York · Zbl 0892.58020
[33] Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9: 620–635
[34] Ledrappier F (1974) Principe variationnel et systèmes dynamiques symboliques. Z Wahr verw Gebiete 30(185): 185–202 · Zbl 0281.62083 · doi:10.1007/BF00533471
[35] Maillard G (2007) Introduction to chains with complete connections. Ecole Federale Polytechnique de Lausanne, winter 2007
[36] Marre O, Boustani SE, Frégnac Y, Destexhe A (2009) Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Phys Rev Lett 102: 138101 · doi:10.1103/PhysRevLett.102.138101
[37] Nirenberg S, Latham P (2003) Decoding neuronal spike trains: how important are correlations. Proc Nat Acad Sci 100(12): 7348–7353 · doi:10.1073/pnas.1131895100
[38] Onicescu O, Mihoc G (1935) Sur les chaînes statistiques. C R Acad Sci Paris 200
[39] Perrinet L (2008) Sparse spike coding: applications of neuroscience to the processing of natural images. In: Society of Photo-Optical Instrumentation Engineers (ed) Proceedings of SPIE, the International Society for Optical Engineering, number ISSN 0277-786X CODEN PSISDG, Bellingham, WA, ETATS-UNIS
[40] Pouzat C, Chaffiol A (2009) On goodness of fit tests for models of neuronal spike trains considered as counting processes. http://arxiv.org/abs/0909.2785v1
[41] Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1996) Spikes, exploring the neural code. MIT Press, Cambridge · Zbl 0912.92004
[42] Riehle A, Grammont F, Diesmann M, Grün S (2000) Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation. J Physiol (Paris) 94: 569–582 · doi:10.1016/S0928-4257(00)01100-1
[43] Roudy Y, Nirenberg S, Latham P (2009) Pairwise maximum entropy models for studying large biological systems: when they can work and when they can’t. PLOS Comput Biol 5(5): e1000380 · doi:10.1371/journal.pcbi.1000380
[44] Rudolph M, Destexhe A (2006) Analytical integrate and fire neuron models with conductance-based dynamics for event driven simulation strategies. Neural Comput 18: 2146–2210 · Zbl 1099.68698 · doi:10.1162/neco.2006.18.9.2146
[45] Ruelle D (1969) Statistical mechanics: rigorous results. Benjamin, New York · Zbl 0177.57301
[46] Ruelle D (1978) Thermodynamic formalism. Addison-Wesley, Reading · Zbl 0401.28016
[47] Ruelle D (1999) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J Stat Phys 95: 393–468 · Zbl 0934.37010 · doi:10.1023/A:1004593915069
[48] Rullen RV, Thorpe S (2001) Rate coding versus temporal order coding: what the retina ganglion cells tell the visual cortex. Neural Comput 13(6): 1255–1283 · Zbl 0963.68645 · doi:10.1162/08997660152002852
[49] Schneidman E, Berry M, Segev R, Bialek W (2006) Weak pairwise correlations imply string correlated network states in a neural population. Nature 440: 1007–1012 · doi:10.1038/nature04701
[50] Seneta E (2006) Non-negative matrices and Markov chains. Springer, New York · Zbl 1099.60004
[51] Sinai Y (1972) Gibbs measures in ergodic theory. Russ Math Surveys 27(4): 21–69 · Zbl 0246.28008 · doi:10.1070/RM1972v027n04ABEH001383
[52] Soula H, Beslon G, Mazet O (2006) Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Neural Comput 18(1): 60–79 · Zbl 1089.68110 · doi:10.1162/089976606774841567
[53] Thorpe S (1990) Spike arrival times: a highly efficient coding scheme for neural networks. In: Parallel processing neural systems and computers, pp 91–94
[54] Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381: 520–522 · doi:10.1038/381520a0
[55] Tkacik G, Schneidman E, Berry M, Bialek W (2006) Ising models for networks of real neurons. arXiv: q-bio/0611072
[56] Touboul J, Faugeras O (2007) The spikes trains probability distributions: a stochastic calculus approach. J Physiol (Paris) 101(1–3): 78–98 · doi:10.1016/j.jphysparis.2007.10.008
[57] Touboul J, Faugeras O (2009) A markovian event-based framework for stochastic spiking neural networks. Technical report, arXiv, 2009. Neural Comput (submitted) · Zbl 1165.60324
[58] Toyoizumi T, Pfister J-P, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing dependent plasticity: synaptic memory and weight distribution. Neural Comput 19: 639–671 · Zbl 1117.92015 · doi:10.1162/neco.2007.19.3.639
[59] Vasquez J, Cessac B, Vieville T (2010) Entropy-based parametric estimation of spike train statistics. J Comput Neurosci (submitted)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.