×

Finite element approximation to a finite-size modified Poisson-Boltzmann equation. (English) Zbl 1230.78026

Summary: The inclusion of steric effects is important when determining the electrostatic potential near a solute surface. We consider a modified form of the Poisson-Boltzmann equation, often called the Poisson-Bikerman equation, in order to model these effects. The modifications lead to bounded ionic concentration profiles and are consistent with the Poisson-Boltzmann equation in the limit of zero-size ions. Moreover, the modified equation fits well into existing finite element frameworks for the Poisson-Boltzmann equation. In this paper, we advocate a wider use of the modified equation and establish well-posedness of the weak problem along with convergence of an associated finite element formulation. We also examine several practical considerations such as conditioning of the linearized form of the nonlinear modified Poisson-Boltzmann equation, implications in numerical evaluation of the modified form, and utility of the modified equation in the context of the classical Poisson-Boltzmann equation.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78A30 Electro- and magnetostatics

Software:

SG; APBS
Full Text: DOI

References:

[1] Davis, M.E., McCammon, J.A.: Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90(3), 509–521 (1990) · doi:10.1021/cr00101a005
[2] Koehl, P.: Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol. 16(2), 142–151 (2006) · doi:10.1016/j.sbi.2006.03.001
[3] Vizcarra, C.L., Mayo, S.L.: Electrostatics in computational protein design. Curr. Opin. Chem. Biol. 9(6), 622–626 (2005) · doi:10.1016/j.cbpa.2005.10.014
[4] Gouy, G.: Sur la constitution de la charge électrique a la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 455–468 (1910) · JFM 41.0957.01 · doi:10.1051/jphystap:019100090045700
[5] Chapman, D.L.: A contribution to the theory of electrocapillarity. Philos. Mag. 25, 457–481 (1913) · JFM 44.0918.01
[6] Borukhov, I., Andelman, D., Orland, H.: Steric effects in electrolytes: a modified Poisson-Boltzmann equation. Phys. Rev. Lett. 79(3), 435–438 (1997) · doi:10.1103/PhysRevLett.79.435
[7] Borukhov, I., Andelman, D., Orland, H.: Adsorption of large ions from an electrolyte solution: a modified Poisson-Boltzmann equation. Electrochim. Acta 46(2–3), 221–229 (2000) · doi:10.1016/S0013-4686(00)00576-4
[8] Khair, A.S., Squires, T.M.: Ion steric effects on electrophoresis of a colloidal particle. J. Fluid Mech. 640, 343–356 (2009) · Zbl 1183.76929 · doi:10.1017/S0022112009991728
[9] Bikerman, J.J.: Structure and capacity of electrical double layer. Philos. Mag. 33(220), 384–397 (1942) · Zbl 0028.36801
[10] Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75(2), 021502 (2007)
[11] Storey, B.D., Edwards, L.R., Kilic, M.S., Bazant, M.Z.: Steric effects on ac electro-osmosis in dilute electrolytes. Phys. Rev. E 77(3), 036317 (2008) · doi:10.1103/PhysRevE.77.036317
[12] Levine, S., Bell, G.M.: Theory of a modified Poisson-Boltzmann equation. I. The volume effect of hydrated ions. J. Phys. Chem. 64(9), 1188–1195 (1960) · doi:10.1021/j100838a019
[13] Outhwaite, C.W., Bhuiyan, L., Levine, S.: Theory of the electric double layer using a modified Poisson-Boltzmann equation. J. Chem. Soc. Faraday Trans. 2, Mol. Chem. Phys. 76, 1388–1408 (1980) · doi:10.1039/f29807601388
[14] Tang, Z., Scriven, L.E., Davis, H.T.: A three-component model of the electrical double layer. J. Chem. Phys. 97(1), 494–503 (1992) · doi:10.1063/1.463595
[15] Chen, L., Holst, M.J., Xu, J.: The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J. Numer. Anal. 45(6), 2298–2320 (2007) · Zbl 1152.65478 · doi:10.1137/060675514
[16] Orttung, W.H.: Direct solution of the Poisson equation for biomolecules of arbitrary shape, polarizability density, and charge distribution. Ann. N.Y. Acad. Sci. 303, 22–37 (1977) · doi:10.1111/j.1749-6632.1977.tb55916.x
[17] Cortis, C.M., Friesner, R.A.: Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes. J. Comput. Chem. 18, 1591–1608 (1997) · doi:10.1002/(SICI)1096-987X(199710)18:13<1591::AID-JCC3>3.0.CO;2-M
[18] Holst, M.J., Baker, N.A., Wang, F.: Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I: algorithms and examples. J. Comput. Chem. 21, 1319–1342 (2000) · doi:10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO;2-8
[19] Baker, N.A., Holst, M.J., Wang, F.: Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II: refinement at solvent accessible surfaces in biomolecular systems. J. Comput. Chem. 21, 1343–1352 (2000) · doi:10.1002/1096-987X(20001130)21:15<1343::AID-JCC2>3.0.CO;2-K
[20] Shestakov, A.I., Milovich, J.L., Noy, A.: Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method. J. Colloid Interface Sci. 247(1), 62–79 (2002) · doi:10.1006/jcis.2001.8033
[21] Xie, D., Zhou, S.: A new minimization protocol for solving nonlinear Poisson-Boltzmann mortar finite element equation. BIT 47(4), 853–871 (2007) · Zbl 1147.65096 · doi:10.1007/s10543-007-0145-9
[22] Wenbin, C., Yifan, S., Qing, X.: A mortar finite element approximation for the linear Poisson-Boltzmann equation. Appl. Math. Comput. 164(1), 11–23 (2005) · Zbl 1117.65152 · doi:10.1016/j.amc.2004.04.058
[23] Bond, S.D., Chaudhry, J.H., Cyr, E.C., Olson, L.N.: A first-order system least-squares finite element method for the Poisson-Boltzmann equation. J. Comput. Chem. 31(8), 1625–1635 (2010)
[24] Zhou, Z., Payne, P., Vasquez, M., Kuhn, N., Levitt, M.: Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy. J. Comput. Chem. 17(11), 1344–1351 (1996) · doi:10.1002/(SICI)1096-987X(199608)17:11<1344::AID-JCC7>3.0.CO;2-M
[25] Li, B.: Minimization of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40(6), 2536–2566 (2009) · Zbl 1180.35504 · doi:10.1137/080712350
[26] Frenkel, D., Smit, B.: Understanding Molecular Simulation, 2nd edn. Academic Press, New York (2002) · Zbl 0889.65132
[27] Yu, S., Geng, W., Wei, G.W.: Treatment of geometric singularities in implicit solvent models. J. Chem. Phys. 126(24), 244108 (2007)
[28] Fogolari, F., Zuccato, P., Esposito, G., Viglino, P.: Biomolecular electrostatics with the linearized Poisson-Boltzmann equation. Biophys. J. 76(1), 1–16 (1999) · doi:10.1016/S0006-3495(99)77173-0
[29] Kurdila, M.Z.A.: Convex Functional Analysis, Systems &amp; Control: Foundations &amp; Applications. Birkhäuser, Basel (2005) · Zbl 1077.46002
[30] Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM Series on Optimization, vol. 6. SIAM, Philadelphia (2006) · Zbl 1095.49001
[31] Yu, Z., Holst, M., Cheng, Y., McCammon, J.A.: Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. J. Mol. Graph. Model. 26(8), 1370–1380 (2008) · doi:10.1016/j.jmgm.2008.01.007
[32] Atkinson, K.E., Han, W.: Theoretical numerical analysis: a functional analysis framework, 2nd edn. Springer, Berlin (2005) · Zbl 1068.47091
[33] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998) · Zbl 1042.35002
[34] Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edn. Cambridge University Press, Cambridge (2007) · Zbl 1180.65146
[35] Born, M.: Volumen und hydratationswärme der ionen. Z. Phys. 1, 45–48 (1920) · doi:10.1007/BF01881023
[36] Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15(1–4), 139–191 (2001) · Zbl 0997.65134 · doi:10.1023/A:1014246117321
[37] Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001) · doi:10.1073/pnas.181342398
[38] Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, vol. 45. SIAM, Philadelphia (2003) · Zbl 1036.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.