×

A variational multiscale a posteriori error estimation method for mixed form of nearly incompressible elasticity. (English) Zbl 1230.74190

Summary: This paper presents an error estimation framework for a mixed displacement-pressure finite element method for nearly incompressible elasticity. The proposed method is based on Variational Multiscale (VMS) concepts, wherein the displacement field is decomposed into coarse scales that can be resolved by a given finite element mesh and fine scales that are beyond the resolution capacity of the mesh. Variational projection of fine scales onto the coarse-scale space via variational embedding of the fine-scale solution into the coarse-scale formulation leads to the stabilized method with two major attributes: first, it is free of volumetric locking and, second, it accommodates arbitrary combinations of interpolation functions for the displacement and pressure fields. This VMS-based stabilized method is equipped with naturally derived error estimators and offers various options for numerical computation of the error. Specifically, two error estimators are explored. The first method employs an element-based strategy and a representation of error via a fine-scale error equation defined over element interiors which is evaluated by a direct post-solution evaluation. This quantity when combined with the global pollution error results in a simple explicit error estimator. The second method involves solving the fine-scale error equation through localization to overlapping patches spread across the domain, thereby leading to an implicit calculation of the local error. This implicit calculation when combined with the global pollution error results in an implicit error estimator. The performance of the stabilized method and the error estimators is investigated through numerical convergence tests conducted for two model problems on uniform and distorted meshes. The sharpness and robustness of the estimators is shown to be consistent across the test cases employed.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B15 Equations linearized about a deformed state (small deformations superposed on large)
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ainsworth, M.; Oden, J. T., A posteriori error estimation in finite element analysis, Computer Methods in Applied Mechanics and Engineering, 142, 1-88 (1997) · Zbl 0895.76040
[2] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), John Wiley & Sons · Zbl 1008.65076
[3] Babuška, I. M.; Miller, A., A feedback finite element method with a posteriori error estimation Part I. The finite element method and some basic properties of the a posteriori error estimator, Computer Methods in Applied Mechanics and Engineering, 61, 1-40 (1987) · Zbl 0593.65064
[4] Babuška, I. M.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering, 12, 1597-1615 (1978) · Zbl 0396.65068
[5] Babuška, I. M.; Rheinboldt, W. C., Analysis of optimal finite element meshes in \(R^1\), Mathematics of Computation, 33, 435-463 (1979) · Zbl 0431.65055
[6] Babuška, I. M.; Strouboulis, T., The Finite Element Method and Its Reliability (2001), Oxford University Press · Zbl 0995.65501
[7] Babuška, I. M.; Strouboulis, T.; Mathur, A.; Upadhyay, C. S., Pollution-error in the \(h\)-version of the finite-element method and the local quality of a-posteriori error estimators, Finite Elements in Analysis and Design, 17, 273-321 (1994) · Zbl 0924.65098
[8] Baiocchi, C.; Brezzi, F.; Franca, L. P., Virtual bubbles and the Galerkin/least-squares method, Computer Methods in Applied Mechanics and Engineering, 105, 125-142 (1993) · Zbl 0772.76033
[9] Bank, R. E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Mathematics of Computation, 44, 283-301 (1985) · Zbl 0569.65079
[10] Becker, R.; Rannacher, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10, 1-102 (2001) · Zbl 1105.65349
[11] Braess, D.; Klaas, O.; Niekamp, R.; Stein, E.; Wobschal, F., Error indicators for mixed finite elements in 2-dimensional linear elasticity, Computer Methods in Applied Mechanics and Engineering, 127, 345-356 (1995) · Zbl 0860.73064
[12] Brezzi, F.; Bristeau, M.-O.; Franca, L. P.; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Computer Methods in Applied Mechanics and Engineering, 96, 117-129 (1992) · Zbl 0756.76044
[13] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer · Zbl 0788.73002
[14] Brezzi, F.; Franca, L. P.; Hughes, T. J.R.; Russo, A., \(b = \int g\), Computer Methods in Applied Mechanics and Engineering, 145, 329-339 (1997) · Zbl 0904.76041
[15] Carstensen, C.; Thiele, J., Partition of unity for localization in implicit a posteriori finite element error control for linear elasticity, International Journal for Numerical Methods in Engineering, 73, 71-95 (2008) · Zbl 1195.74166
[16] ElSheikh, A. H.; Chidiac, S. E.; Smith, W. S., A posteriori error estimation based on numerical realization of the variational multiscale method, Computer Methods in Applied Mechanics and Engineering, 197, 3637-3656 (2008) · Zbl 1197.65175
[17] Eriksson, K.; Johnson, C., An adaptive finite element method for linear elliptic problems, Mathematics of Computation, 50, 361-383 (1988) · Zbl 0644.65080
[18] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Introduction to adaptive methods for differential equations, Acta Numerica, 4, 105-158 (1995) · Zbl 0829.65122
[19] Franca, L. P.; Hughes, T. J.R., Two classes of mixed finite element methods, Computer Methods in Applied Mechanics and Engineering, 69, 89-129 (1988) · Zbl 0651.65078
[20] Hauke, G.; Doweidar, M.; Miana, M., The multiscale approach to error estimation and adaptivity, Computer Methods in Applied Mechanics and Engineering, 195, 1573-1593 (2006) · Zbl 1122.76057
[21] Hauke, G.; Fuster, D.; Doweidar, M., Variational Multiscale a-posteriori error estimation for multi-dimensional transport problems, Computer Methods in Applied Mechanics and Engineering, 197, 2701-2718 (2008) · Zbl 1194.76119
[22] Huerta, A.; Diez, P., Error estimation including pollution assessment for nonlinear finite element analysis, Computer Methods in Applied Mechanics and Engineering, 181, 21-41 (2000) · Zbl 0964.74067
[23] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, 127, 387-401 (1995) · Zbl 0866.76044
[24] Hughes, T. J.R.; Franca, L.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation for the Stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, 59, 85-99 (1986) · Zbl 0622.76077
[25] Hughes, T. J.R.; Feijóo, G.; Mazzei, L.; Quincy, J.-B., The variational multiscale method - A paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, 166, 3-24 (1998) · Zbl 1017.65525
[26] Korotov, S.; Neittaanmäki, P.; Repin, S., A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery, Journal of Numerical Mathematics, 11, 33-59 (2003) · Zbl 1039.65075
[27] Larson, M.; Målqvist, A., Adaptive variational multiscale methods based on a posteriori error estimation: duality techniques for elliptic problems, (Engquist, B.; Lötstedt, P.; Runborg, O., Lecture Notes in: Computational Science and Engineering, vol. 44 (2005), Springer: Springer Berlin), 181-193 · Zbl 1105.65353
[28] Larson, M.; Målqvist, A., Adaptive variational multiscale methods based on a posteriori error estimates: Energy estimates for elliptic problems, Computer Methods in Applied Mechanics and Engineering, 196, 2313-2324 (2007) · Zbl 1173.74431
[29] Larsson, F.; Diez, P.; Huerta, A., A flux-free a posteriori error estimator for the incompressible Stokes problem using a mixed FE formulation, Computer Methods in Applied Mechanics and Engineering, 199, 2383-2402 (2010) · Zbl 1231.76154
[30] Masud, A.; Scovazzi, G., A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations, International Journal for Numerical Methods in Fluids, 65, 28-42 (2011) · Zbl 1432.76202
[31] Masud, A.; Franca, L. P., A hierarchical multiscale framework for problems with multiscale source terms, Computer Methods in Applied Mechanics and Engineering, 197, 2692-2700 (2008) · Zbl 1194.74557
[32] Masud, A.; Kannan, R., A multiscale framework for computational nanomechanics: Application to carbon nanotubes, International Journal for Numerical Methods in Engineering, 78, 863-882 (2009) · Zbl 1183.74293
[33] Masud, A.; Xia, K., A stabilized mixed finite element method for nearly incompressible elasticity, Journal of Applied Mechanics, 72, 711-720 (2005) · Zbl 1111.74548
[34] Morin, P.; Nochetto, R. H.; Siebert, K. G., Local problems on stars: a posteriori error estimators, convergence, and performance, Mathematics of Computation, 72, 1067-1097 (2003) · Zbl 1019.65083
[35] Nakshatrala, K. B.; Masud, A.; Hjelmstad, K. D., On finite element formulations for nearly incompressible linear elasticity, Computational Mechanics, 41, 547-561 (2008) · Zbl 1162.74472
[36] Oden, J. T., Optimal \(h-p\) finite element methods, Computer Methods in Applied Mechanics and Engineering, 112, 309-331 (1994) · Zbl 0842.65068
[37] Oden, J. T.; Feng, Y., Local and pollution error estimation for finite element approximations of elliptic boundary value problems, Journal of Computational and Applied Mathematics, 74, 245-293 (1996) · Zbl 0871.65094
[38] Parés, N.; Dı´ez, P.; Huerta, A., Subdomain-based flux-free a posteriori error estimators, Computer Methods in Applied Mechanics and Engineering, 195, 297-323 (2006) · Zbl 1193.65191
[39] Russo, A., A posteriori error estimators via bubble functions, Mathematical Models and Methods in Applied Sciences, 6, 33-41 (1996) · Zbl 0853.65109
[40] Stewart, J. R.; Hughes, T. J.R., A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori error estimates, Computer Methods in Applied Mechanics and Engineering, 158, 1-22 (1998) · Zbl 0945.65121
[41] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw-Hill Book Company. · Zbl 0266.73008
[42] Verfürth, R., A posteriori error estimators for the Stokes equations, Numerische Mathematik, 55, 309-325 (1989) · Zbl 0674.65092
[43] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator in the finite element method, International Journal for Numerical Methods in Engineering, 24, 337-357 (1987) · Zbl 0602.73063
[44] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, International Journal for Numerical Methods in Engineering, 33, 1365-1382 (1992) · Zbl 0769.73085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.