×

Fracture analysis of plane piezoelectric/piezomagnetic multiphase composites under transient loading. (English) Zbl 1230.74159

Summary: The transient response of cracked composite materials made of piezoelectric and piezomagnetic phases, when subjected to in-plane magneto-electro-mechanical dynamic loads, is addressed in this paper by means of a mixed boundary element method (BEM) approach. Both the displacement and traction boundary integral equations (BIEs) are used to develop a single-domain formulation. The convolution integrals arising in the time-domain BEM are numerically computed by Lubich’s quadrature, which determines the integration weights from the Laplace transformed fundamental solution and a linear multistep method. The required Laplace-domain fundamental solution is derived by means of the Radon transform in the form of line integrals over a unit circumference. The singular and hypersingular BIEs are numerically evaluated in a precise and efficient manner by a regularization procedure based on a simple change of variable, as previously proposed by the authors for statics. Discontinuous quarter-point elements are used to properly capture the behavior of the extended crack opening displacements (ECOD) around the crack-tip and directly evaluate the field intensity factors (stress, electric displacement and magnetic induction intensity factors) from the computed nodal data. Numerical results are obtained to validate the formulation and illustrate its capabilities. The effect of the combined application of electric, magnetic and mechanical loads on the dynamic field intensity factors is analyzed in detail for several crack configurations under impact loading.

MSC:

74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
74E30 Composite and mixture properties
74S15 Boundary element methods applied to problems in solid mechanics

Software:

Algorithm 368
Full Text: DOI

References:

[1] Barnett, D. M.; Lothe, J., Dislocations and line charges in anisotropic piezoelectric insulators, Phys. Status Solidi (b), 67, 105-111 (1975)
[2] Buchanan, G. R., Layered versus multiphase magneto-electro-elastic composites, Compos. Part B: Engrg., 35, 5, 413-420 (2004)
[3] J. Domínguez, Boundary Elements in Dynamics, CMP and Elsevier Applied Science, Southampton and London, 1993.; J. Domínguez, Boundary Elements in Dynamics, CMP and Elsevier Applied Science, Southampton and London, 1993. · Zbl 0790.73003
[4] Eerenstein, W.; Mathur, N. D.; Scott, J. F., Multiferroic and magnetoelectric materials, Nature, 442, 759-765 (2006)
[5] Feng, W. J.; Xue, Y.; Zou, Z. Z., Crack growth of an interface crack between two dissimilar magneto-electro-elastic materials under antiplane mechanical and in-plane electric magnetic impact, Theor. Appl. Fract. Mech., 43, 376-394 (2005)
[6] Feng, W. J.; Pan, E., Dynamic fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-elastic plates, Engrg. Fract. Mech., 75, 6, 1468-1487 (2008)
[7] Feng, W. J.; Li, Y. S.; Xu, Z. H., Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings: Mode-I problem, Int. J. Solids Struct., 46, 18-19, 3346-3356 (2009) · Zbl 1167.74547
[8] Gao, C.-F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids. Part I: Exact solution of a crack, Int. J. Engrg. Sci., 41, 969-981 (2003) · Zbl 1211.74187
[9] García-Sánchez, F.; Sáez, A.; Domínguez, J., Anisotropic and piezoelectric materials fracture analysis by BEM, Comput. Struct., 83, 804-820 (2005)
[10] García-Sánchez, F.; Rojas-Díaz, R.; Sáez, A.; Zhang, Ch., Fracture of magnetoelectroelastic composite materials using boundary element method (BEM), Theor. Appl. Fract. Mech., 47, 192-204 (2007)
[11] García-Sánchez, F.; Zhang, Ch., A comparative study of three BEM for transient dynamic crack analysis of 2-D anisotropic solids, Comput. Mech., 40, 753-769 (2007) · Zbl 1191.74053
[12] García-Sánchez, F.; Zhang, Ch.; Sáez, A., 2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM, Comput. Methods Appl. Mech. Engrg., 197, 3108-3121 (2008) · Zbl 1194.74299
[13] Hong, H.; Chen, J. T., Derivations of integral equations of elasticity, J. Engrg. Mech. ASCE, 114, 1028-1044 (1988)
[14] Hu, K.; Li, G., Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading, Int. J. Solids Struct., 42, 9-10, 2823-2835 (2005) · Zbl 1093.74550
[15] Jiang, X.; Pan, E., Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes, Int. J. Solids Struct., 41, 4361-4382 (2004) · Zbl 1079.74541
[16] Li, Y. J.; Dunn, M. L., Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior, J. Intell. Mater. Syst. Struct., 9, 404-416 (1998)
[17] Li, X.-F., Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts, Int. J. Solids Struct., 42, 11-12, 3185-3205 (2005) · Zbl 1142.74014
[18] Lubich, C., Convolution quadrature and discretized operational calculus. Part I, Numer. Math., 52, 129-145 (1988) · Zbl 0637.65016
[19] Lubich, C., Convolution quadrature and discretized operational calculus. Part II, Numer. Math., 52, 413-425 (1988) · Zbl 0643.65094
[20] Nan, C.-W.; Bichurin, M. I.; Dong, S.; Viehland, D.; Srinivasan, G., Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys., 103, 031101 (2008)
[21] Parton, V. Z.; Kudryavtsev, B. A., Electromagnetoelasticity, piezoelectrics and electrically conductive solids (1988), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York
[22] Rojas-Díaz, R.; Sáez, A.; García-Sánchez, F.; Zhang, Ch., Time-harmonic Green’s functions for anisotropic magnetoelectroelasticity, Int. J. Solids Struct., 45, 144-158 (2008) · Zbl 1167.74407
[23] Rojas-Díaz, R.; García-Sánchez, F.; Sáez, A., Analysis of cracked magnetoelectroelastic composites under time-harmonic loading, Int. J. Solids Struct., 47, 71-80 (2010) · Zbl 1193.74038
[24] Sáez, A.; Gallego, R.; Domínguez, J., Hypersingular quarter-point boundary elements for crack problems, Int. J. Numer. Methods Engrg., 38, 1681-1701 (1995) · Zbl 0831.73077
[25] Schanz, M.; Antes, H., A new visco-and elastodynamic time domain boundary element formulation, Comput. Mech., 20, 5, 452-459 (1997) · Zbl 0898.73071
[26] Shindo, Y.; Narita, F.; Ozawa, E., Impact response of a finite crack in an orthotropic piezoelectric ceramic, Acta Mech., 137, 99-107 (1999) · Zbl 0974.74020
[27] Sladek, J.; Sladek, V.; Solek, P.; Pan, E., Fracture analysis of cracks in magnetoelectro-elastic solids by the MLPG, Comput. Mech., 42, 697-714 (2008) · Zbl 1163.74564
[28] Soh, A. K.; Liu, J. X., On the constitutive equations of magnetoelectroelastic solids, J. Intell. Mater. Syst. Struct., 16, 597-602 (2005)
[29] Song, Z. F.; Sih, G. C., Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation, Theor. Appl. Fract. Mech., 39, 189-207 (2003)
[30] Stehfest, H., Comun. Algorithm 368: Numerical inversion of Laplace transform; an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[31] Tian, W. Y.; Rajapakse, R. K.N. D., Fracture analysis of magnetoelectroelastic solids by using path independent integrals, Int. J. Fract., 131, 311-335 (2005) · Zbl 1196.74217
[32] Van Suchtelen, J., Product properties: A new application of composite materials, Philips Res. Rep., 27, 28-37 (1972)
[33] Wang, B. L.; Mai, Y.-W., Crack tip field in piezoelectric/piezomagnetic media, Eur. J. Mech., A/Solids, 22, 591-602 (2003) · Zbl 1032.74641
[34] Wang, C.-Y.; Achenbach, J. D., Elastodynamic fundamental solutions for anisotropic solids, Geophys. J. Int., 118, 384-392 (1994)
[35] Wang, C.-Y.; Zhang, Ch., 3-D and 2-D Dynamic Green’s functions and time-domain BIEs for piezoelectric solids, Engrg. Anal. Bound. Elem., 29, 5, 454-465 (2005) · Zbl 1182.74053
[36] Wang, B.-L.; Han, J.-C.; Du, S.-Y., Transient fracture of a layered magnetoelectroelastic medium, Mech. Mater., 42, 3, 354-364 (2010)
[37] Yong, H.-D.; Zhou, Y.-H., Transient response of a cracked magnetoelectroelastic strip under anti-plane impact, Int. J. Solids Struct., 44, 2, 705-717 (2007) · Zbl 1123.74028
[38] Zhong, X.-C.; Liu, F.; Li, X.-F., Transient response of a magnetoelectroelastic solid with two collinear dielectric cracks under impacts, Int. J. Solids Struct., 46, 14-15, 2950-2958 (2009) · Zbl 1167.74414
[39] Zhong, X.-C.; Li, X.-F.; Lee, K.-Y., Transient response of a cracked magnetoelectric material under the action of in-plane sudden impacts, Comput. Mater. Sci., 45, 4, 905-911 (2009)
[40] Zhong, X.-C.; Li, X.-F., Diffraction of SH-waves by an interfacial crack between a magnetoelectroelastic solid and an elastic material, Mech. Adv. Mater. Struct., 17, 2, 134-144 (2010)
[41] Zhou, Z.-G.; Wu, L.-Z.; Wang, B., The dynamic behavior of two collinear interface cracks in magneto-electro-elastic materials, Eur. J. Mech., A/Solids, 24, 2, 253-262 (2005) · Zbl 1069.74047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.