×

Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. (English) Zbl 1230.74155

Summary: This paper proposes a topology optimization for a linear elasticity design problem subjected to an uncertain load. The design problem is formulated to minimize a robust compliance that is defined as the maximum compliance induced by the worst load case of an uncertain load set. Since the robust compliance can be formulated as the scalar product of the uncertain input load and output displacement vectors, the idea of “aggregation” used in the field of control is introduced to assess the value of the robust compliance. The aggregation solution technique provides the direct relationship between the uncertain input load and output displacement, as a small linear system composed of these vectors and the reduced size of a symmetric matrix, in the context of a discretized linear elasticity problem, using the finite element method. Introducing the constraint that the Euclidean norm of the uncertain load set is fixed, the robust compliance minimization problem is formulated as the minimization of the maximum eigenvalue of the aggregated symmetric matrix according to the Rayleigh-Ritz theorem for symmetric matrices. Moreover, the worst load case is easily established as the eigenvector corresponding to the maximum eigenvalue of the matrix. The proposed structural optimization method is implemented using topology optimization and the method of moving asymptotes (MMA). The numerical examples provided illustrate mechanically reasonable structures and establish the worst load cases corresponding to these optimal structures.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

References:

[1] Hemp, W. S., Optimum Structures (1973), Clarendon Press: Clarendon Press Oxford · Zbl 0608.73086
[2] Pironneau, O., Optimal Shape Design for Elliptic Systems (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0496.93029
[3] Haftka, R.; Gürdal, Z., Elements of Structural Optimization (1989), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[4] Rozvany, G. I.N., Structural Design via Optimality Criteria (1989), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1274.74383
[5] Allaire, G., Shape Optimization by the Homogenization Method (2001), Springer-Verlag: Springer-Verlag New York
[6] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 0957.74037
[7] Haslinger, J.; Mäkinen, R. A.E., Introduction to Shape Optimization: Theory, Approximation, and Computation (2003), SIAM: SIAM Philadelphia · Zbl 1020.74001
[8] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[9] Ben-Tal, A.; Nemirovski, A., Robust optimization-methodology and applications, Math. Program., 92, 3, 453-480 (2002) · Zbl 1007.90047
[10] Park, G.; Lee, T.; Lee, K.; Hwang, K., Robust design: an overview, AIAA J., 44, 1, 181-191 (2006)
[11] Beyer, H.; Sendhoff, B., Robust optimization – a comprehensive survey, Comput. Methods Appl. Mech. Engrg., 196, 33-34, 3190-3218 (2007) · Zbl 1173.74376
[12] Schuëller, G.; Jensen, H., Computational methods in optimization considering uncertainties – an overview, Comput. Methods Appl. Mech. Engrg., 198, 1, 2-13 (2008) · Zbl 1194.74258
[13] (Tsompanakis, Y.; Lagaros, N. D.; Papadrakakis, M., Structural Design Optimization Considering Uncertainties (2008), Taylor & Francis: Taylor & Francis Leiden) · Zbl 0964.74045
[14] Guest, J.; Igusa, T., Structural optimization under uncertain loads and nodal locations, Comput. Methods Appl. Mech. Engrg., 198, 1, 116-124 (2008) · Zbl 1194.74238
[15] Luo, Y.; Kang, Z.; Luo, Z.; Li, A., Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model, Struct. Multidisc. Optim., 39, 3, 297-310 (2009) · Zbl 1274.74234
[16] Kang, Z.; Luo, Y., Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models, Comput. Methods Appl. Mech. Engrg., 198, 41-44, 3228-3238 (2009) · Zbl 1230.74153
[17] Kang, Z.; Luo, Y., Reliability-based structural optimization with probability and convex set hybrid models, Struct. Multidisc. Optim., 42, 1, 89-102 (2010)
[18] Kogiso, N.; Ahn, W.; Nishiwaki, S.; Izui, K.; Yoshimura, M., Robust topology optimization for compliant mechanisms considering uncertainty of applied loads, J. Adv. Mech. Des. Syst. Manuf., 2, 1, 96-107 (2008)
[19] Ben-Tal, A.; Nemirovski, A., Robust truss topology design via semidefinite programming, SIAM J. Optim., 7, 4, 991-1016 (1997) · Zbl 0899.90133
[20] A. Cherkaev, E. Cherkaeva, Optimal design for uncertain loading condition, in: Homogenization: In Memory of Serguei Kozlov, World Scientific, Singapore, 1999.; A. Cherkaev, E. Cherkaeva, Optimal design for uncertain loading condition, in: Homogenization: In Memory of Serguei Kozlov, World Scientific, Singapore, 1999. · Zbl 1055.74549
[21] Fuchs, M. B.; Farhi, E., Shape of stiffest controlled structures under unknown loads, Comput. Struct., 79, 18, 1661-1670 (2001)
[22] Cherkaev, E.; Cherkaev, A., Principal compliance and robust optimal design, J. Elast., 72, 1, 71-98 (2003) · Zbl 1079.74051
[23] Cherkaev, E.; Cherkaev, A., Minimax optimization problem of structural design, Comput. Struct., 86, 13-14, 1426-1435 (2008)
[24] de Gournay, F.; Allaire, G.; Jouve, F., Shape and topology optimization of the robust compliance via the level set method, ESIAM COCV, 14, 1, 43-70 (2008) · Zbl 1245.49054
[25] Conti, S.; Held, H.; Pach, M.; Rumpf, M.; Schultz, R., Shape optimization under uncertainty – a stochastic programming perspective, SIAM J. Optim., 19, 4, 1610-1632 (2009) · Zbl 1176.49045
[26] Held, H., Shape Optimization under Uncertainty from a Stochastic Programming Point of View (2009), Vieweg+Teubner: Vieweg+Teubner Wiesbaden · Zbl 1189.90004
[27] Ben-Haim, Y.; Elishakoff, I., Convex Models of Uncertainty in Applied Mechanics (1990), Elsevier: Elsevier Amsterdam · Zbl 0703.73100
[28] Aoki, M., Control of large-scale dynamic systems by aggregation, IEEE Trans. Automat. Contr., 13, 3, 246-253 (1968)
[29] Sandell, N.; Varaiya, P.; Athans, M.; Safonov, M., Survey of decentralized control methods for large scale systems, IEEE Trans. Automat. Contr., 23, 2, 108-128 (1978) · Zbl 0385.93001
[30] Takezawa, A.; Nishiwaki, S.; Kitamura, M.; Silva, E. C.N., Topology optimization for designing strain-gauge load cells, Struct. Multidisc. Optim., 42, 3, 387-402 (2010)
[31] Svanberg, K., The method of moving asymptotes – a new method for structural optimization, Int. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[32] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press New York · Zbl 0576.15001
[33] Allaire, G.; Kaber, S. M., Numerical Linear Algebra (2008), Springer: Springer New York · Zbl 1135.65014
[34] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202 (1989)
[35] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 9, 635-654 (1999) · Zbl 0957.74037
[36] Zhou, M.; Rozvany, G. I.N., The coc algorithm. II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Engrg., 89, 1-3, 309-336 (1991)
[37] Haug, E. J.; Choi, K. K.; Komkov, V., Design Sensitivity Analysis of Structural Systems (1986), Academic Press: Academic Press Orlando, FL · Zbl 0618.73106
[38] Seyranian, A. P.; Lund, E.; Olhoff, N., Multiple eigenvalues in structural optimization problems, Struct. Optim., 8, 4, 207-227 (1994)
[39] Diaz, A.; Sigmund, O., Checkerboard patterns in layout optimization, Struct. Optim., 10, 1, 40-45 (1995)
[40] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim., 16, 1, 68-75 (1998)
[41] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidisc. Optim., 33, 4, 401-424 (2007)
[42] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Engrg., 61, 2, 238-254 (2004) · Zbl 1079.74599
[43] Krog, L.; Olhoff, N., Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives, Comput. Struct., 72, 4-5, 535-563 (1999) · Zbl 1050.74644
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.