×

On general transport equations with abstract boundary conditions. The case of divergence free force field. (English) Zbl 1230.47073

This paper continues work in the authors’ paper [Mediterr. J. Math. 6, No. 4, 367–402 (2009; Zbl 1198.47055)]. The subject is well-posedness (in the sense of semigroup theory) of the general transport equation
\[ \partial_t f({\mathbf x}, t) + {\mathcal F}({\mathbf x}) \cdot \nabla _{\mathbf x}f({\mathbf x}, t) = 0 \quad ({\mathbf x} \in \Omega, \;t > 0), \]
where \({\mathcal F}({\mathbf x})\) is a regular field in a domain \(\Omega\) of \(n\)-dimensional Euclidean space. The initial and boundary conditions are
\[ f({\mathbf x}, 0) = f_0({\mathbf x}) \quad ({\mathbf x} \in \Omega) \, , \qquad f|_{\Gamma_-}({\mathbf y}, t) = H(f|_{\Gamma_+})({\mathbf y}, t) \quad ({\mathbf y} \in \Gamma_- \, , \;t > 0), \]
where the \(\Gamma_\pm\) are boundaries of the phase space and the boundary operator \(H\) is a linear, possibly unbounded operator between the trace spaces \(L^1(\Gamma_\pm, \mu_\pm(dx))\); here, \(\mu_-\) (resp., \(\mu_+)\) is a suitably defined positive Borel measure in \(\Gamma_-\) (resp., \(\Gamma_+)\). The authors study fine properties of the traces and extend previous results on dissipative and multiplicative boundary conditions. Finally, they extend theorems on boundary operators of norm 1 to more general fields and measures.

MSC:

47D06 One-parameter semigroups and linear evolution equations
47N50 Applications of operator theory in the physical sciences
35F05 Linear first-order PDEs
82C40 Kinetic theory of gases in time-dependent statistical mechanics

Citations:

Zbl 1198.47055
Full Text: DOI

References:

[1] Ambrosio L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004) · Zbl 1075.35087 · doi:10.1007/s00222-004-0367-2
[2] L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields, Lecture Notes in Mathematics ”Calculus of Variations and Non-Linear Partial Differential Equations” (CIME Series, Cetraro, 2005) 1927, B. Dacorogna, P. Marcellini eds., 2–41, 2008.
[3] Apostol T.: Mathematical Analysis. Addison-Wesley, Reading (1957) · Zbl 0077.05501
[4] Arlotti L.: The Cauchy problem for the linear Maxwell–Boltzmann equation. J. Differential Equations 69, 166–184 (1987) · Zbl 0655.35068 · doi:10.1016/0022-0396(87)90115-X
[5] Arlotti L.: A perturbation theorem for positive contraction semigroups on L 1-spaces with applications to transport equation and Kolmogorov’s differential equations. Acta Appl. Math. 23, 129–144 (1991) · Zbl 0734.45005 · doi:10.1007/BF00048802
[6] Arlotti L., Lods B.: Substochastic semigroups for transport equations with conservative boundary conditions. J. Evol. Equations 5, 485–508 (2005) · Zbl 1117.47029 · doi:10.1007/s00028-005-0209-8
[7] Arlotti L., Banasiak J., Lods B.: On transport equations driven by a nondivergence-free force field. Math. Meth. Appl. Sci. 30, 2155–2177 (2007) · Zbl 1157.35493 · doi:10.1002/mma.817
[8] Arlotti L., Banasiak J., Lods B.: A new approach to transport equations associated to a regular field: trace results and well-posedness. Med. J. Math. 6, 367–402 (2009) · Zbl 1198.47055 · doi:10.1007/s00009-009-0022-7
[9] L. Arlotti, B. Lods, M. Mokhtar–Kharroubi, On perturbed substochastic semigroups in abstract state spaces, Preprint, 2009. · Zbl 1241.47037
[10] J. Banasiak, L. Arlotti, Perturbations of positive semigroups with applications, Springer-Verlag, 2006. · Zbl 1097.47038
[11] Bardos C.: Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. École Norm. Sup. 3, 185–233 (1970) · Zbl 0202.36903
[12] Beals R., Protopopescu V.: Abstract time-dependent transport equations. J. Math. Anal. Appl. 121, 370–405 (1987) · Zbl 0657.45007 · doi:10.1016/0022-247X(87)90252-6
[13] Belleni-Morante A.: Neutron transport in a uniform slab with generalized boundary conditions. J. Appl. Phys. 5, 1553–1558 (1970) · Zbl 0194.58603
[14] Boulanouar M.: Opérateur d’advection: Existence d’un semi-groupe (II). Transp. Theory Stat. Phys. 32, 185–197 (2003) · Zbl 1068.47049 · doi:10.1081/TT-120019042
[15] Cessenat M.: Théorèmes de traces Lp pour les espaces de fonctions de la neutronique. C. R. Acad. Sci. Paris., Ser I 299, 831–834 (1984) · Zbl 0568.46030
[16] Cessenat M.: Théorèmes de traces pour les espaces de fonctions de la neutronique. C. R. Acad. Sci. Paris., Ser. I 300, 89–92 (1985) · Zbl 0648.46028
[17] Dautray R., Lions J.L.: Mathematical analysis and numerical methods for science and technology. Vol. 6: Evolution problems II. Springer, Berlin (2000) · Zbl 0956.35003
[18] DiPerna R., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989) · Zbl 0696.34049 · doi:10.1007/BF01393835
[19] Dorn B.: Semigroups for flows in infinite networks. Semigroup Forum 76, 341–356 (2008) · Zbl 1151.47046 · doi:10.1007/s00233-007-9036-2
[20] B. Dorn, M. Kramar Fijav, R. Nagel and A. Radl, The semigroup approach to transport processes in networks. Physica D, in press, 2009. · Zbl 1193.82035
[21] Frosali G., van der Mee C., Mugelli F.: A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators. Math. Methods Appl. Sci. 27, 669–685 (2004) · Zbl 1053.47035 · doi:10.1002/mma.495
[22] Greenberg W., van der Mee C., Protopopescu V.: Boundary Value Problems in Abstract Kinetic theory. Birkhäuser Verlag, Basel (1987) · Zbl 0624.35003
[23] P. R. Halmos, Measure Theory, Van Nostrand, Toronto, 3rd ed., 1954.
[24] Kramar M., Sikolya E.: Spectral properties and asymptotic periodicity of flows in networks. Math. Z. 249, 139–162 (2005) · Zbl 1075.47037 · doi:10.1007/s00209-004-0695-3
[25] Lods B.: Semigroup generation properties of streaming operators with noncontractive boundary conditions. Math. Comput. Modelling 42, 1441–1462 (2005) · Zbl 1103.47033 · doi:10.1016/j.mcm.2004.12.007
[26] van der Mee C.: Time dependent kinetic equations with collision terms relatively bounded with respect to collision frequency. Transp. Theory Stat. Phys. 30, 63–90 (2001) · Zbl 0990.82020 · doi:10.1081/TT-100104455
[27] Mokhtar–Kharroubi M.: On collisionless transport semigroups with boundary operators of norm one. J. Evol. Equations 8, 327–362 (2008) · Zbl 1171.47035 · doi:10.1007/s00028-007-0360-5
[28] M. Mokhtar-Kharroubi, J. Voigt, On honesty of perturbed substochastic C 0-semigroups in L 1-spaces. J. Operator Theory, 2009, in press. · Zbl 1212.47019
[29] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, N.Y./Berlin, 1983. · Zbl 0516.47023
[30] Voigt J.: Functional analytic treatment of the initial boundary value problem for collisionless gases. München, Habilitationsschrift (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.