×

Hyperbolicity of the trace map for a strongly coupled quasiperiodic Schrödinger operator. (English) Zbl 1230.37039

The paper considers the discrete Schrödinger operator associated to a Sturmian quasiperiodic potential \[ (H\psi)(n)=\psi(n-1)-\psi(n+1)+v(n,\theta)\psi(n). \] The quasiperiodicity of \(v(n)\) is generated by an irrational number \(\theta\) according to the formula \[ v(n,\theta)=V([(n+1)\theta]-[n\theta]), \] where \(V\in\mathbb R^+\) is the coupling constant and \([x]\) denotes the largest integer smaller than \(x\). The attention is focused on the potential associated to the irrational number \(\omega\), the so-called silver ratio \[ \omega=\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}=[0,2,2,\dots,2,\dots]. \] It is shown that under this restriction one can study the spectrum of \(H\) by means of an auxiliary dynamical system, described by the so-called trace map \[ T(x,y,z):=(x(y^2-1)-zy,xy-z,y). \] The spectrum of \(H\) can be determined by studing the non-wandering set of \(T\) on a certain invariant surface \(S_V\). It is shown that the non-wandering set of \(T\) is hyperbolic provided the coupling \(V\) is sufficiently large. As a consequence, for these values of the coupling constant, the local and global Hausdorff dimension and global box counting dimension of the spectum of \(H\) coincide and are smooth functions of the coupling constant.

MSC:

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)

References:

[1] Bellisard J., Iochum B., Scoppola E., Testard D.: Spectral properties of one dimensional quasicrystals. Commun. Math. Phys. 125, 527–543 (1989) · Zbl 0825.58010 · doi:10.1007/BF01218415
[2] Cantat S.: Bers and Hénon, Painlevé and Schröedinger. Duke Math. J. 149(3), 411–460 (2009) · Zbl 1181.37068 · doi:10.1215/00127094-2009-042
[3] Casdagli M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107, 295–318 (1986) · Zbl 0606.39004 · doi:10.1007/BF01209396
[4] Damanik, D.: Gordon-type arguments in the spectral theory of one-dimensional quasicrystals. In: Directions in mathematical quasicrystals. CRM Monogr. Ser., vol. 13, pp. 277–305. Amer. Math. Soc., Providence, RI (2000) · Zbl 0989.81025
[5] Damanik D., Embree M., Gorodetski A., Tcheremchantsev S.: The fractal dimension of the spectrum of the Fibonacci hamiltonian. Commun. Math. Phys. 280, 499–516 (2008) · Zbl 1192.81151 · doi:10.1007/s00220-008-0451-3
[6] Damanik D., Gorodetski A.: Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity 22, 123 (2009) · Zbl 1154.82312 · doi:10.1088/0951-7715/22/1/007
[7] Damanik D., Lenz D.: Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues. Commun. Math. Phys. 207, 687–696 (1999) · Zbl 0962.81012 · doi:10.1007/s002200050742
[8] Damanik D., Killip R., Lenz D.: Uniform spectral properties of one-dimensional quasicrystals. III. {\(\alpha\)}-continuity. Commun. Math. Phys. 212(1), 191–204 (2000) · Zbl 1045.81024 · doi:10.1007/s002200000203
[9] Damanik D., Tcheremchantsev S.: Upper bounds in quantum dynamics. J. Am. Math. Soc. 20, 799–827 (2006) · Zbl 1114.81036 · doi:10.1090/S0894-0347-06-00554-6
[10] Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers. Clarendon Press, Oxford (1960) · Zbl 0086.25803
[11] Marin, L.: Borne Dynamique en Dynamique Quantique, Université d’Orléans, tel-00482512, version 1 (2009)
[12] Liu Q., Wen Z.: Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with sturmian potentials. Potential Anal. 20, 33–59 (2004) · Zbl 1049.81023 · doi:10.1023/A:1025537823884
[13] Lothaire, M.: Algebraic combinatorics on words, Chap. 2, 1st edn. Cambridge University Press, Cambridge (2002) pp. 40–97 · Zbl 1001.68093
[14] Manning A., McCluskey H.: Hausdorff dimension for horseshoes. Ergodic Theory Dynam. Syst. 3, 251–261 (1983) · Zbl 0529.58022
[15] Moser J.: Stable and Random Motions in Dynamical Systems. Princeton Univ. Press, Princeton (1973) · Zbl 0271.70009
[16] Palis, J., Viana, M.: On the continuity of the Hausdorff dimension and limit capacity for horseshoes. In: Dynamical Systems, Lecture Notes in Mathematics, vol. 1331, pp. 150–160 (1998)
[17] Pesin, Ya: Dimension theory in dynamical systems. In: Chicago Lectures in Mathematics Series (1997)
[18] Raymond, L.: A constructive gap labeling theorem for the discrete Schrödinger operator on a quasi periodic chain (preprint)
[19] Süto A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111, 409–415 (1987) · Zbl 0624.34017 · doi:10.1007/BF01238906
[20] Teschl, G.: Jacobi operators and completely integrable nonlinear lattices. In: Mathematical surveys and monographs, vol. 72, ISSN 0076-5376 (2007)
[21] Mané R.: The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.) 20, 1–24 (1990) · Zbl 0723.58029 · doi:10.1007/BF02585431
[22] De Melo W.: Structural stability of diffeomorphisms on two-manifolds. Invent. Math. 21, 233–246 (1973) · Zbl 0291.58011 · doi:10.1007/BF01390199
[23] Palis J., Takens F.: Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge University Press, Cambridge (1993) · Zbl 0790.58014
[24] Palis, J., Takens, F.: homoclinic bifurcations and hyperbolic dynamics, 16Ĉolo’quio Brasileiro de Matema’tica. In: 16th Brazillian Mathematics Colloquium. Instituto de Matema’tica Pura e Aplicada (IMPA), Rio de Janeiro (1987)
[25] Roberts J.A.G.: (5-LTRB) Escaping orbits in trace maps. Phys. A 228(1–4), 295–325 (1996) · doi:10.1016/0378-4371(95)00428-9
[26] Takens, F.: Limit capacity and Hausdorff dimension of dynamicallyt defined Cantor sets. In: Dynamical Systems, Lecture Notes in Mathematics, vol. 1331, pp. 196–212 (1988) · Zbl 0661.58024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.