×

Connecting T-duality invariant theories. (English) Zbl 1229.81229

Summary: We show that the vanishing of the one-loop beta-functional of the doubled formalism (which describes string theory on a torus fibration in which the fibres are doubled) is the same as the equation of motion of the recently proposed generalised metric formulation of double field theory restricted to this background: both are the vanishing of a generalised Ricci tensor. That this tensor arises in both backgrounds indicates the importance of a new doubled differential geometry for understanding both constructions.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory

References:

[1] Hull, C.; Zwiebach, B., Double field theory, JHEP, 0909, 099 (2009)
[2] Hohm, O.; Hull, C.; Zwiebach, B., Background independent action for double field theory, JHEP, 1007, 016 (2010) · Zbl 1290.81069
[3] Hohm, O.; Hull, C.; Zwiebach, B., Generalized metric formulation of double field theory, JHEP, 1008, 008 (2010) · Zbl 1291.81255
[4] M. Gualtieri, Generalized complex geometry, Ph.D. Thesis (Advisor: Nigel Hitchin), math/0401221.; M. Gualtieri, Generalized complex geometry, Ph.D. Thesis (Advisor: Nigel Hitchin), math/0401221. · Zbl 1235.32020
[5] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev. D, 48, 2826-2837 (1993)
[6] Siegel, W., Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D, 47, 5453-5459 (1993)
[7] Hull, C. M., Doubled geometry and T-folds, JHEP, 0707, 080 (2007)
[8] Hull, C., A Geometry for non-geometric string backgrounds, JHEP, 0510, 065 (2005)
[9] Duff, M., Duality rotations in string theory, Nucl. Phys. B, 335, 610 (1990) · Zbl 0967.81519
[10] Tseytlin, A. A., Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B, 242, 163-174 (1990)
[11] Tseytlin, A. A., Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B, 350, 395-440 (1991)
[12] Maharana, J.; Schwarz, J. H., Noncompact symmetries in string theory, Nucl. Phys. B, 390, 3-32 (1993)
[13] Schwarz, J. H.; Sen, A., Duality symmetric actions, Nucl. Phys. B, 411, 35-63 (1994) · Zbl 0999.81503
[14] Berman, D. S.; Copland, N. B., The String partition function in Hullʼs doubled formalism, Phys. Lett. B, 649, 325-333 (2007) · Zbl 1248.81153
[15] Berman, D. S.; Copland, N. B.; Thompson, D. C., Background field equations for the duality symmetric string, Nucl. Phys. B, 791, 175-191 (2008) · Zbl 1225.81111
[16] Hackett-Jones, E.; Moutsopoulos, G., Quantum mechanics of the doubled torus, JHEP, 0610, 062 (2006)
[17] Callan, J.; Curtis, G.; Martinec, E.; Perry, M.; Friedan, D., Strings in background fields, Nucl. Phys. B, 262, 593 (1985)
[18] Berman, D. S.; Thompson, D. C., Duality symmetric strings, dilatons and \(O(d, d)\) effective actions, Phys. Lett. B, 662, 279-284 (2008) · Zbl 1282.81140
[19] Thompson, D. C., T-duality invariant approaches to string theory
[20] Dabholkar, A.; Hull, C., Generalised T-duality and non-geometric backgrounds, JHEP, 0605, 009 (2006)
[21] Hull, C., Global aspects of T-duality, gauged sigma models and T-folds, JHEP, 0710, 057 (2007)
[22] Pasti, P.; Sorokin, D. P.; Tonin, M., On Lorentz invariant actions for chiral p forms, Phys. Rev. D, 55, 6292-6298 (1997)
[23] Alvarez-Gaume, L.; Freedman, D. Z.; Mukhi, S., The background field method and the ultraviolet structure of the supersymmetric nonlinear sigma model, Annals Phys., 134, 85 (1981)
[24] Honerkamp, J., Chiral multiloops, Nucl. Phys. B, 36, 130-140 (1972)
[25] Braaten, E.; Curtright, T. L.; Zachos, C. K., Torsion and geometrostasis in nonlinear sigma models, Nucl. Phys. B, 260, 630 (1985)
[26] Mukhi, S., The geometric background field method, renormalization and the Wess-Zumino term in nonlinear sigma models, Nucl. Phys. B, 264, 640 (1986)
[27] Hull, C.; Zwiebach, B., The Gauge algebra of double field theory and Courant brackets, JHEP, 0909, 090 (2009)
[28] Jeon, I.; Lee, K.; Park, J.-H., Differential geometry with a projection: Application to double field theory, JHEP, 1104, 014 (2011) · Zbl 1250.81085
[29] Hull, C. M.; Townsend, P. K., Finiteness and conformal invariance in nonlinear sigma models, Nucl. Phys. B, 274, 349 (1986)
[30] Hull, C.; Reid-Edwards, R., Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP, 0909, 014 (2009), temporary entry
[31] Reid-Edwards, R., Flux compactifications, twisted tori and doubled geometry, JHEP, 0906, 085 (2009)
[32] Hohm, O.; Kwak, S. K., Frame-like geometry of double field theory, J. Phys. A, 44, 085404 (2011) · Zbl 1209.81168
[33] Jeon, I.; Lee, K.; Park, J.-H., Stringy differential geometry, beyond Riemann
[34] Jeon, I.; Lee, K.; Park, J.-H., Double field formulation of Yang-Mills theory
[35] Klimcik, C.; Severa, P., Dual non-Abelian duality and the Drinfeld double, Phys. Lett. B, 351, 455-462 (1995)
[36] Avramis, S. D.; Derendinger, J.-P.; Prezas, N., Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B, 827, 281-310 (2010) · Zbl 1203.81131
[37] Sfetsos, K.; Siampos, K.; Thompson, D. C., Renormalization of Lorentz non-invariant actions and manifest T-duality, Nucl. Phys. B, 827, 545-564 (2010) · Zbl 1203.81151
[38] Berman, D. S.; Perry, M. J., Generalized geometry and M theory · Zbl 1298.81244
[39] Berman, D. S.; Godazgar, H.; Perry, M. J., \(SO(5, 5)\) duality in M-theory and generalized geometry, Phys. Lett. B, 700, 65-67 (2011)
[40] Thompson, Daniel C., Duality Invariance: From M-theory to Double Field Theory, JHEP, 1108, 125 (2011) · Zbl 1298.81333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.