×

An affine model for the actions in an integrable system with monodromy. (English) Zbl 1229.70051

Summary: We give a standard model for the flat affine geometry defined by the local action variables of a completely integrable system. We are primarily interested in the affine structure in the neighborhood of a critical value with nontrivial monodromy.

MSC:

70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
Full Text: DOI

References:

[1] Duistermaat, J., On Global Action Angle Coordinates, Communications on Pure and Applied Mathematics, 1980, vol. 33, pp. 687–706. · Zbl 0439.58014 · doi:10.1002/cpa.3160330602
[2] Cushman, R. and Bates, L., Global Aspects of Classical Integrable Systems, Birkhauser, 1997. · Zbl 0882.58023
[3] Bates, L., Monodromy in the Champagne Bottle, Journal of Applied Mathematics and Physics (ZAMP), November 1991, vol. 42, pp. 837–847. · Zbl 0755.58028 · doi:10.1007/BF00944566
[4] Poor, W., Differential Geometric Structures, McGraw-Hill, New York, 1981. · Zbl 0493.53027
[5] Fried, D., Goldman, W., and Hirsch, M., Affine Manifolds with Nilpotent Holonomy, Comment. Math. Helvetici, 1981, vol. 56, pp. 487–523. · Zbl 0516.57014 · doi:10.1007/BF02566225
[6] Kuiper, N., Sur les Surfaces Localement Affines, In Colloques de géométrie différentielle, Strasbourg, 1953, pp. 79–87.
[7] Arnol’d, V., Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1980.
[8] Vũ Ngoc San, Quantum Monodromy and Bohr-Sommerfeld Rules, Letters in Mathematical Physics, 2001, vol. 55, pp. 205–217. · Zbl 0981.81043 · doi:10.1023/A:1010944312712
[9] Horozov, E., Perturbations of the Spherical Pendulum and Abelian Integrals, J. Reine Angew. Math., 1990, vol. 408, pp. 114–135. · Zbl 0692.58031
[10] Sadovskií, D. and Zhilinskií, B., Monodromy, Diabolic Points and Angular Momentum Coupling, Physics Letters A, 1999, vol. 256, pp. 235–244. · Zbl 0934.81005 · doi:10.1016/S0375-9601(99)00229-7
[11] Colin de Verdière Y. and Vey, J., Le lemme de Morse Isochore. Topology, 1979, vol. 18, pp. 283–293. · Zbl 0441.58003 · doi:10.1016/0040-9383(79)90019-3
[12] Eliasson, L.H., Hamiltonian Systems with Poisson Commuting Integrals, PhD thesis, University of Stockholm, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.