×

Optimally localized approximate identities on the 2-sphere. (English) Zbl 1229.41023

The author introduces a method to construct approximate identities on the 2-sphere that have an optimal localization. By using such an approach the author accelerates the calculations of approximations on the 2-sphere with a comparably small increase of the error. The localization measure in the optimization problem includes a weight function that is chosen under some constraints. The optimally localizing identity for a certain weight function is calculated and numerically tested.

MSC:

41A35 Approximation by operators (in particular, by integral operators)
41A55 Approximate quadratures
42C25 Uniqueness and localization for orthogonal series
65D15 Algorithms for approximation of functions
Full Text: DOI

References:

[1] DOI: 10.1007/BF02252258 · Zbl 0331.65011 · doi:10.1007/BF02252258
[2] DOI: 10.1006/aama.1994.1008 · Zbl 0801.65141 · doi:10.1006/aama.1994.1008
[3] Freeden W., Multiscale Modelling of Spaceborne Geodata (1999) · Zbl 0957.65123
[4] Freeden W., Constructive Approximation on the Sphere–With Applications to Geomathematics (1998) · Zbl 0896.65092
[5] DOI: 10.1556/SScMath.39.2002.1-2.3 · Zbl 1006.65149 · doi:10.1556/SScMath.39.2002.1-2.3
[6] DOI: 10.1007/s00607-006-0169-z · Zbl 1107.65128 · doi:10.1007/s00607-006-0169-z
[7] DOI: 10.1007/s00041-006-6915-y · Zbl 1125.65019 · doi:10.1007/s00041-006-6915-y
[8] N. Laín Fernández ( 2003 ). Polynomial bases on the sphere. PhD Thesis, University of Lübeck, Department of Mathematics , Logos–Verlag , Berlin . · Zbl 1056.42027
[9] Laín Fernández N., Electronic Transactions on Numerical Analysis 19 pp 84– (2005)
[10] DOI: 10.1016/j.cam.2005.03.096 · Zbl 1103.42019 · doi:10.1016/j.cam.2005.03.096
[11] Laín Fernández N., Constructive Function Theory pp 267– (2002)
[12] DOI: 10.1155/JAM.2005.321 · Zbl 1128.42001 · doi:10.1155/JAM.2005.321
[13] DOI: 10.1007/s00041-005-4006-0 · Zbl 1096.42018 · doi:10.1007/s00041-005-4006-0
[14] Mhaskar H.N., Approximation Theory XI: Gatlinburg 2004 (Brentwood) pp 287– (2005)
[15] V. Michel ( 2002 ). A multiscale approximation for operator equations in separable Hilbert spaces–case study: Reconstruction and description of the Earth’s interior. Habilitation thesis , Shaker Verlag , Aachen .
[16] DOI: 10.1007/BF01343563 · Zbl 0046.32501 · doi:10.1007/BF01343563
[17] Müller C., Spherical Harmonics 17 (1966) · Zbl 0138.05101 · doi:10.1007/BFb0094775
[18] DOI: 10.1006/acha.1996.0025 · Zbl 0858.42025 · doi:10.1006/acha.1996.0025
[19] Prudnikov A.P., Integrals and Series, Volume 2: Special Functions (1986) · Zbl 0606.33001
[20] Schwarz H.R., Numerische Mathematik (1993)
[21] DOI: 10.1137/S0036144504445765 · Zbl 1117.42003 · doi:10.1137/S0036144504445765
[22] DOI: 10.1023/B:ACOM.0000016428.25905.da · Zbl 1055.65038 · doi:10.1023/B:ACOM.0000016428.25905.da
[23] Szegö G., Orthogonal Polynomials. American Mathematical Society Colloquium Publications (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.