×

Hierarchies from \(D\)-brane instantons in globally defined Calabi-Yau orientifolds. (English) Zbl 1228.81226

Summary: We construct the first globally consistent semirealistic type I string vacua on an elliptically fibered manifold where the zero modes of the Euclidean \(D1\)-instanton sector allow for the generation of nonperturbative Majorana masses of an intermediate scale. In another class of global models, a \(D1\)-brane instanton can generate a Polonyi-type superpotential breaking supersymmetry at an exponentially suppressed scale.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

References:

[1] DOI: 10.1016/j.nuclphysb.2007.02.016 · Zbl 1117.81112 · doi:10.1016/j.nuclphysb.2007.02.016
[2] DOI: 10.1088/1126-6708/2007/01/078 · doi:10.1088/1126-6708/2007/01/078
[3] DOI: 10.1088/1126-6708/2007/03/052 · doi:10.1088/1126-6708/2007/03/052
[4] DOI: 10.1088/1126-6708/2007/05/024 · doi:10.1088/1126-6708/2007/05/024
[5] DOI: 10.1088/1126-6708/2007/10/034 · doi:10.1088/1126-6708/2007/10/034
[6] DOI: 10.1088/1126-6708/2007/04/076 · doi:10.1088/1126-6708/2007/04/076
[7] DOI: 10.1016/j.nuclphysb.2007.05.006 · Zbl 1188.81139 · doi:10.1016/j.nuclphysb.2007.05.006
[8] DOI: 10.1103/PhysRevD.76.086002 · doi:10.1103/PhysRevD.76.086002
[9] DOI: 10.1088/1126-6708/2007/06/011 · doi:10.1088/1126-6708/2007/06/011
[10] DOI: 10.1088/1126-6708/2007/06/067 · doi:10.1088/1126-6708/2007/06/067
[11] DOI: 10.1088/1126-6708/2007/07/038 · doi:10.1088/1126-6708/2007/07/038
[12] DOI: 10.1088/1126-6708/2007/08/044 · Zbl 1326.81139 · doi:10.1088/1126-6708/2007/08/044
[13] DOI: 10.1103/PhysRevLett.100.061602 · Zbl 1228.81224 · doi:10.1103/PhysRevLett.100.061602
[14] DOI: 10.1088/1126-6708/2007/12/051 · Zbl 1246.81215 · doi:10.1088/1126-6708/2007/12/051
[15] DOI: 10.1088/1126-6708/2005/10/086 · doi:10.1088/1126-6708/2005/10/086
[16] S.H. Katz, Adv. Theor. Math. Phys. 6 pp 979– (2003) ISSN: http://id.crossref.org/issn/1095-0761 · doi:10.4310/ATMP.2002.v6.n6.a1
[17] DOI: 10.1088/1126-6708/2000/02/030 · Zbl 0959.81034 · doi:10.1088/1126-6708/2000/02/030
[18] DOI: 10.1088/1126-6708/1999/06/034 · Zbl 0952.14033 · doi:10.1088/1126-6708/1999/06/034
[19] DOI: 10.1088/1126-6708/2007/05/041 · doi:10.1088/1126-6708/2007/05/041
[20] DOI: 10.1142/S0217732396002198 · Zbl 1022.81675 · doi:10.1142/S0217732396002198
[21] DOI: 10.1103/PhysRevD.76.126009 · doi:10.1103/PhysRevD.76.126009
[22] M. Aganagic, Nucl. Phys. B796 pp 1– (2008) ISSN: http://id.crossref.org/issn/0550-3213 · Zbl 1219.81226 · doi:10.1016/j.nuclphysb.2007.11.032
[23] DOI: 10.1088/1126-6708/2007/02/002 · doi:10.1088/1126-6708/2007/02/002
[24] DOI: 10.1103/PhysRevD.68.046002 · doi:10.1103/PhysRevD.68.046002
[25] DOI: 10.1088/1126-6708/2007/02/028 · doi:10.1088/1126-6708/2007/02/028
[26] DOI: 10.1103/PhysRevD.75.025019 · doi:10.1103/PhysRevD.75.025019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.