×

Immersed b-spline (i-spline) finite element method for geometrically complex domains. (English) Zbl 1228.74097

Summary: A novel b-spline based immersed finite element method is introduced for the computation of geometrically and topologically complex problems. The geometry description and the finite element analysis rely on a block structured logically Cartesian mesh which encloses the domain of interest. A signed distance function is used for representing the domain on the Cartesian mesh, whereby the domain boundary is the zeroth level set of the signed distance function. Away from the domain boundaries, the standard b-spline basis functions are used for the finite element interpolation. Close to domain boundaries, a new approach has been developed for modifying the b-spline basis functions so that they locally interpolate the Dirichlet boundary conditions. The efficiency and robustness of the proposed approach is demonstrated with a number of one-, two- and three-dimensional linear boundary value problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65D07 Numerical computation using splines

Software:

SuperLU; mctoolbox
Full Text: DOI

References:

[1] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194, 4135-4195 (2005) · Zbl 1151.74419
[2] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, International Journal for Numerical Methods in Engineering, 47, 2039-2072 (2000) · Zbl 0983.74063
[3] Peters, J.; Reif, U., Subdivision surfaces (2008), Springer Verlag · Zbl 1148.65014
[4] Warren, J.; Weimer, H., Subdivision methods for geometric design: a constructive approach (2001), Morgan Kaufman · Zbl 0970.68177
[5] Cirak, F.; Scott, M.; Antonsson, E.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Computer-Aided Design, 34, 137-148 (2002)
[6] Cottrell, J.; Hughes, T.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA (2009), John Wiley & Sons Ltd. · Zbl 1378.65009
[7] Prautzsch, H.; Boehm, W.; Paluszny, M., Bezier and b-spline techniques (2002), Springer Verlag · Zbl 1033.65008
[8] de Boor, C.; Höllig, K.; Riemenschneider, S., Box splines (1993), Springer Verlag · Zbl 0814.41012
[9] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, 111, 283-303 (1994) · Zbl 0845.73078
[10] Peskin, C., The immersed boundary method, Acta Numerica, 11, 1-39 (2002)
[11] Belytschko, T.; Parimi, C.; Moes, N.; Sukumar, N.; Usui, S., Structured extended finite element methods for solids defined by implicit surfaces, International Journal for Numerical Methods in Engineering, 56, 609-635 (2003) · Zbl 1038.74041
[12] Höllig, K.; Reif, U.; Wipper, J., Weighted extended b-spline approximation of Dirichlet problems, SIAM Journal on Numerical Analysis, 39, 442-462 (2002) · Zbl 0996.65119
[13] Höllig, K., Finite element methods with b-splines (2003), SIAM: SIAM Philadelphia · Zbl 1020.65085
[14] Kantorovich, L. W.; Krylov, W. I., Approximate methods of higher analysis (1964), Interscience Publishers: Interscience Publishers New York, translated from the 4th Russian edition
[15] Piegl, L.; Tiller, W., The NURBS book (1997), Springer · Zbl 0868.68106
[16] Rogers, D., An introduction to NURBS (2001), Academic Press
[17] de Boor, C., A practical guide to splines (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0987.65015
[18] S. Mauch, Efficient algorithms for solving static Hamilton-Jacobi equations, Ph.D. thesis, California Institute of Technology, 2003.; S. Mauch, Efficient algorithms for solving static Hamilton-Jacobi equations, Ph.D. thesis, California Institute of Technology, 2003.
[19] Cirak, F.; Deiterding, R.; Mauch, S., Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations, Computers & Structures, 85, 1049-1065 (2007)
[20] Lorensen, W.; Cline, H. E., Marching cubes: a high resolution 3d surface construction algorithm, Computer Graphics, 21, 163-169 (1987)
[21] Rvachev, V. L.; Sheiko, T. I., R-functions in boundary value problems in mechanics, Applied Mechanics Reviews, 48, 151-188 (1995)
[22] Rvachev, V. L.; Sheiko, T. I.; Shapiro, V.; Tsukanov, I., On completeness of RFM solution structures, Computational Mechanics, 25, 305-317 (2000) · Zbl 1129.74348
[23] Nocedal, J.; Wright, S. J., Numerical optimization (2000), Springer
[24] Timoshenko, S.; Goodier, J. N., Theory of elasticity (1970), McGraw-Hill Higher Education · Zbl 0266.73008
[25] J.W. Demmel, J.R. Gilbert, X.S. Li, SuperLU users’ guide, Technical Report LBNL-44289, Lawrence Berkeley National Lab, Berkeley, CA, USA, 2009.; J.W. Demmel, J.R. Gilbert, X.S. Li, SuperLU users’ guide, Technical Report LBNL-44289, Lawrence Berkeley National Lab, Berkeley, CA, USA, 2009.
[26] Higham, N. J., Accuracy and stability of numerical algorithms (1996), SIAM: SIAM Philadelphia, PA, USA · Zbl 0847.65010
[27] Evans, D. J.; Hossen, K. A.A., The numerical solution of problems involving singularities by the finite element method, International Journal of Computer Mathematics, 19, 339-379 (1986) · Zbl 0654.65079
[28] Evans, J.; Bazilevs, Y.; Babuska, I.; Hughes, T., n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Computer Methods in Applied Mechanics and Engineering, 198, 1726-1741 (2009) · Zbl 1227.65093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.