×

Detecting exponential dichotomy on the real line: SVD and QR algorithms. (English) Zbl 1228.65123

Summary: We propose and implement numerical methods to detect exponential dichotomy on the real line. Our algorithms are based on the singular value decomposition and the QR factorization of a fundamental matrix solution. The theoretical justification for our methods was laid down in the companion paper [the authors, J. Differ. Equations 248, No. 2, 287–308 (2010; Zbl 1205.34062)].

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations

Citations:

Zbl 1205.34062
Full Text: DOI

References:

[1] Adrianova, L.Y.: Introduction to Linear Systems of Differential Equations. Translations of Mathematical Monographs, vol. 146. Amer. Math. Soc., Providence (1995) · Zbl 0844.34001
[2] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.: Lyapunov exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part I: Theory. ...Part II: Numerical applications. Meccanica 15, 9–20, 21–30 (1980) · Zbl 0488.70015
[3] Beyn, W.J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990) · Zbl 0706.65080 · doi:10.1093/imanum/10.3.379
[4] Beyn, W.J.: On well-posed problems for connecting orbits in dynamical systems. In: Chaotic Numerics (Geelong, 1993). Contemp. Math., vol. 172, pp. 131–168. Amer. Math. Soc., Providence (1994) · Zbl 0813.58046
[5] Beyn, W.J., Lorenz, J.: Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals. Numer. Funct. Anal. Optim. 20(3–4), 201–244 (1999) · Zbl 0924.34071 · doi:10.1080/01630569908816889
[6] Broer, H.W., Osinga, H.M., Vegter, G.: Algorithms for computing normally hyperbolic invariant manifolds. Z. Angew. Math. Phys. 48(3), 480–524 (1997) · Zbl 0872.34030 · doi:10.1007/s000330050044
[7] Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath, Boston (1965) · Zbl 0154.09301
[8] Coppel, W.A.: Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629. Springer, Berlin (1978) · Zbl 0376.34001
[9] Dieci, L., Elia, C.: The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects. J. Differ. Equ. 230(2), 502–531 (2006) · Zbl 1139.93014 · doi:10.1016/j.jde.2006.08.007
[10] Dieci, L., Elia, C.: SVD algorithms to approximate spectra of dynamical systems. Math. Comput. Simul. 79(4), 1235–1254 (2008) · Zbl 1166.65363 · doi:10.1016/j.matcom.2008.03.005
[11] Dieci, L., Van Vleck, E.S.: Lyapunov and other spectra: a survey. In: Collected Lectures on the Preservation of Stability under Discretization (Fort Collins, CO, 2001), pp. 197–218. SIAM, Philadelphia (2002)
[12] Dieci, L., Van Vleck, E.S.: Lyapunov spectral intervals: theory and computation. SIAM J. Numer. Anal. 40(2), 516–542 (2002) (electronic) · Zbl 1021.65067 · doi:10.1137/S0036142901392304
[13] Dieci, L., Van Vleck, E.S.: On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101(4), 619–642 (2005) · Zbl 1083.65069 · doi:10.1007/s00211-005-0644-z
[14] Dieci, L., Van Vleck, E.S.: Perturbation theory for approximation of Lyapunov exponents by QR methods. J. Dyn. Differ. Equ. 18(3), 815–840 (2006) · Zbl 1166.34319 · doi:10.1007/s10884-006-9024-3
[15] Dieci, L., Van Vleck, E.S.: Lyapunov and Sacker-Sell spectral intervals. J. Dyn. Differ. Equ. 19(2), 265–293 (2007) · Zbl 1130.34027 · doi:10.1007/s10884-006-9030-5
[16] Dieci, L., Van Vleck, E.S.: On the error in QR integration. SIAM J. Numer. Anal. 46(3), 1166–1189 (2008) · Zbl 1170.65068 · doi:10.1137/06067818X
[17] Dieci, L., Elia, C., Van Vleck, E.: Exponential dichotomy on the real line: SVD and QR methods. J. Differ. Equ. 248(2), 287–308 (2010) · Zbl 1205.34062 · doi:10.1016/j.jde.2009.07.004
[18] Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971/1972) · Zbl 0246.58015 · doi:10.1512/iumj.1972.21.21017
[19] Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979) · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[20] Huels, T.: Computing sacker and sell spectra for discrete dynamical systems. Preprint
[21] Humpherys, J., Sandstede, B., Zumbrun, K.: Efficient computation of analytic bases in Evans function analysis of large systems. Numer. Math. 103(4), 631–642 (2006) · Zbl 1104.65081 · doi:10.1007/s00211-006-0004-7
[22] Humpherys, J., Zumbrun, K.: An efficient shooting algorithm for Evans function calculations in large systems. Physica D 220(2), 116–126 (2006) · Zbl 1101.65082 · doi:10.1016/j.physd.2006.07.003
[23] Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition · Zbl 0435.47001
[24] Palmer, K.: Shadowing in Dynamical Systems. Mathematics and its Applications, vol. 501. Kluwer Academic, Dordrecht (2000) · Zbl 0997.37001
[25] Palmer, K.J.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104(1), 149–156 (1988) · Zbl 0675.34006 · doi:10.1090/S0002-9939-1988-0958058-1
[26] Pilyugin, S.Y.: Shadowing in Dynamical Systems. Lecture Notes in Mathematics, vol. 1706. Springer, Berlin (1999) · Zbl 0954.37014
[27] Sacker, R.J., Sell, G.R.: A spectral theory for linear differential systems. J. Differ. Equ. 27(3), 320–358 (1978) · Zbl 0372.34027 · doi:10.1016/0022-0396(78)90057-8
[28] Sakamoto, K.: Estimates on the strength of exponential dichotomies and application to integral manifolds. J. Differ. Equ. 107(2), 259–279 (1994) · Zbl 0811.34007 · doi:10.1006/jdeq.1994.1012
[29] Sandstede, B.: Stability of travelling waves. In: Handbook of Dynamical Systems, vol. 2, pp. 983–1055. North-Holland, Amsterdam (2002) · Zbl 1056.35022
[30] Van Vleck, E.: On the error in the product QR decomposition. SIAM J. Matrix Anal. Appl. 31, 1775–1791 (2010) · Zbl 1206.65147 · doi:10.1137/090761562
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.