×

Master-slave synchronization of Lur’e systems with sector and slope restricted nonlinearities. (English) Zbl 1228.34076

Summary: This letter presents a synchronization method for Lur’e systems with sector and slope restricted nonlinearities. A static error feedback controller based on the Lyapunov stability theory is proposed for asymptotic synchronization. The Lyapunov function candidate is chosen as a quadratic form of the error states and nonlinear functions of the systems. The nonlinearities are expressed as convex combinations of sector and slope bounds by using convex properties of the nonlinear function so that equality constraints are converted into inequality constraints. Then, the feedback gain matrix is derived through a linear matrix inequality (LMI) formulation. Finally, a numerical example shows the effectiveness of the proposed method.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34H10 Chaos control for problems involving ordinary differential equations
93B52 Feedback control
Full Text: DOI

References:

[1] Chen, G.; Dong, X., From Chaos to Order: Methodologies, Perspectives and Applications (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[2] Sprott, J. C., Chaos and Time-Series Analysis (2003), Oxford Univ. Press · Zbl 1012.37001
[3] Ott, E.; Grebogi, C.; Yorke, J. A., Phys. Rev. Lett., 64, 1196 (1990) · Zbl 0964.37501
[4] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) · Zbl 0938.37019
[5] Wu, X.; Lu, J., Chaos Solitons Fractals, 18, 721 (2003) · Zbl 1068.93019
[6] Suykens, J. A.K.; Vandewalle, J., Int. J. Bifur. Chaos, 3, 665 (1996)
[7] Suykens, J. A.K.; Curran, P. F.; Chua, L. O., IEEE Trans. Circuits Systems I Fund. Theory Appl., 46, 841 (1999) · Zbl 1055.93549
[8] Yalçin, M. E.; Suykens, J. A.K.; Vandewalle, J., Int. J. Bifur. Chaos, 11, 1707 (2001)
[9] Liao, X.; Chen, G., Int. J. Bifur. Chaos, 13, 207 (2003) · Zbl 1129.93509
[10] Cao, J.; Li, H. X.; Ho, D. W.C., Chaos Solitons Fractals, 23, 1285 (2005) · Zbl 1086.93050
[11] Han, Q.-L., Phys. Lett. A, 360, 563 (2007)
[12] Park, Ju H.; Kwon, O. M., Chaos Solitons Fractals, 23, 445 (2005) · Zbl 1061.93509
[13] Park, Ju H., Chaos Solitons Fractals, 25, 579 (2005) · Zbl 1092.37514
[14] Lee, S. M.; Ji, D. H.; Park, Ju H.; Won, S. C., Phys. Lett. A, 372, 4905 (2008)
[15] Suykens, J. A.K.; Curran, P. F.; Chua, L. O., Int. J. Bifur. Chaos, 7, 671 (1997) · Zbl 0925.93343
[16] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM Philadelphia · Zbl 0816.93004
[17] Chua, L. O.; Komura, M.; Matsumoto, T., IEEE Trans. Circuits Systems I Fund. Theory Appl., 33, 1072 (1986) · Zbl 0634.58015
[18] Kapitaniak, T.; Chua, L. O., Int. J. Bifur. Chaos, 4, 477-482 (1994) · Zbl 0813.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.