×

Patching subfields of division algebras. (English) Zbl 1228.12004

Given a field \(F\), a finite group \(G\) is called \(F\)-admissible if there is a \(G\)-Galois extension \(E/F\) such that \(E\) is a maximal subfield of some central division \(F\)-algebra [see M. M. Schacher, J. Algebra 9, 451–477 (1968; Zbl 0174.34103)]. There has been a vast literature on this subject; see, for example, the references of the paper under review. In fact, many papers are devoted to the situation when \(F\) is a global field. Among these results, Schacher proved that, if \(G\) is \(Q\)-admissible, then every \(p\)-Sylow subgroup of \(G\) is meta-cyclic, i.e., a \(p\)-group generated by two cyclic subgroups such that one of them is a normal subgroup.
This paper considers the case when \(F\) is an algebraic function field of one variable over a field \(K\), which is complete discrete-valued with algebraically closed residue field \(k\). In this case, if \(G\) is a finite group with \(\gcd \{\text{char}\,k, |G| \}=1\), the main theorem of this paper is that, \(G\) is \(F\)-admissible if and only every \(p\)-Sylow subgroup of \(G\) is bicyclic, i.e., abelian and meta-cyclic.
The proof of the forward direction (“\(F\)-admissible” \(\Rightarrow\) “bicyclic”) is to show first that every Sylow subgroup of \(G\) is meta-cyclic (Theorem 3.3), which is analogous to Schacher’s proof for \(Q\)-admissibility. Once the base field \(F\) has enough roots of unity, then the bicyclic property will follow (see Lemma 3.1). But the authors prove more; the interested reader should consult Theorem 3.3 and its various consequences, e.g. Corollaries 3.4, 3.6, 3.7, besides the main application Proposition 3.5.
In the proof of Theorem 3.3, it is important to have a central division \(F\)-algebra \(D\) which realizes the \(F\)-admissibility for \(G\) and satisfies the index-period property for \(D\), an assumption reminiscent of the situations of global or local fields.
To prove the converse direction, take a suitable integral model of \(F\). More precisely, let \(T\) be a complete DVR with quotient field \(K\), \(\hat{X}\) be a regular projective \(T\)-curve with function field \(F\), \(X\) the closed fiber of \(\hat{X}\) such that the reduced irreducible components of \(X\) are regular. It is possible to find a finite morphism \(f:\hat{X} \rightarrow P^1_T\) so that \(f^{-1}(\infty)\) contains all the singular points of \(X\) (and possibly some other points) where \(\infty \in P^1_k\).
Suppose that all Sylow subgroups of \(G\) are bicyclic. Consider first \(G\) is a \(p\)-group of the form \(C_q \times C_{q'}\). Take a regular point \(Q \in X\), \(R_Q\) the local ring of \(\hat{X}\) at \(Q\), \(\hat{R_Q}\) its completion. Choose suitable generators \(f, t\) for the maximal ideal of \(\hat{R_Q}\). With the aid of Lemma 4.3 of this paper, it is not difficult to construct a central division \(F\)-algebra with a maximal subfield which is Galois over \(F\) with group isomorphic to \(C_q \times C_{q'}\).
In general, if \(p_1, \dots, p_r\) are all the prime numbers dividing \(|G|\) and \(P_1, \dots, P_r\) the corresponding Sylow subgroups, choose distinct regular points \(Q_1, \dots, Q_r\) as above. The difficulty is how to globalize these data. The key idea is the patching method [see D. Harbater and J. Hartmann, Isr. J. Math. 176, 61–107 (2010; Zbl 1213.14052), D. Harbater, Number theory, Semin. New York 1984/85, Lect. Notes Math. 1240, 165–195 (1987; Zbl 0627.12015)]. The patching method is summarized in Theorem 4.1. Lemma 4.2 is the version which is used in the present situation. The converse direction is proved in Proposition 4.4 and Theorem 4.5.

MSC:

12F12 Inverse Galois theory
16S35 Twisted and skew group rings, crossed products
12E30 Field arithmetic
16K50 Brauer groups (algebraic aspects)
16K20 Finite-dimensional division rings
14H25 Arithmetic ground fields for curves

References:

[1] Shreeram Shankar Abhyankar, Resolution of singularities of algebraic surfaces, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 1 – 11.
[2] Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. · Zbl 0279.13001
[3] David Chillag and Jack Sonn, Sylow-metacyclic groups and \?-admissibility, Israel J. Math. 40 (1981), no. 3-4, 307 – 323 (1982). · Zbl 0496.20027 · doi:10.1007/BF02761371
[4] Jean-Louis Colliot-Thélène, Manuel Ojanguren and Raman Parimala, Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes. In: Proceedings of the International Colloquium on Algebra, Arithmetic and Geometry, Tata Inst. Fund. Res. Stud. Math., vol. 16, pp. 185-217, Narosa Publ. Co., 2002. Preprint at \( \langle\)http://www.math.u-psud.fr/\( \sim\)colliot/CTOjPa22may01.ps\( \rangle\). · Zbl 1055.14019
[5] Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. · Zbl 0215.36602
[6] A. J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), no. 1, 71 – 94. · Zbl 1060.14025 · doi:10.1215/S0012-7094-04-12313-9
[7] Walter Feit, The \?-admissibility of 2\?\(_{6}\) and 2\?\(_{7}\), Israel J. Math. 82 (1993), no. 1-3, 141 – 156. · Zbl 0791.12003 · doi:10.1007/BF02808111
[8] Walter Feit, \?\?(2,11) is \Bbb Q-admissible, J. Algebra 257 (2002), no. 2, 244 – 248. · Zbl 1028.12003 · doi:10.1016/S0021-8693(02)00523-9
[9] Walter Feit, \?\?\?\(_{2}\)(11) is admissible for all number fields, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) Springer, Berlin, 2004, pp. 295 – 299. · Zbl 1121.12004
[10] Paul Feit and Walter Feit, The \?-admissibility of \?\?(2,5), Geom. Dedicata 36 (1990), no. 1, 1 – 13. · Zbl 0702.12001 · doi:10.1007/BF00181462
[11] Walter Feit and Paul Vojta, Examples of some \?-admissible groups, J. Number Theory 26 (1987), no. 2, 210 – 226. · Zbl 0619.12007 · doi:10.1016/0022-314X(87)90079-5
[12] Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46 – 66 (French). Alexander Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 67 – 87 (French). Alexander Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 88 – 188 (French).
[13] Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46 – 66 (French). Alexander Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 67 – 87 (French). Alexander Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 88 – 188 (French).
[14] Philippe Gille and Tamás Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006. · Zbl 1137.12001
[15] David Harbater, Galois coverings of the arithmetic line, Number theory (New York, 1984 – 1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 165 – 195. · doi:10.1007/BFb0072980
[16] David Harbater and Julia Hartmann, Patching over fields, Israel J. Math. 176 (2010), 61 – 107. · Zbl 1213.14052 · doi:10.1007/s11856-010-0021-1
[17] David Harbater, Julia Hartmann, and Daniel Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), no. 2, 231 – 263. · Zbl 1259.12003 · doi:10.1007/s00222-009-0195-5
[18] Helmut Hasse, Number theory, Translated from the third (1969) German edition, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Reprint of the 1980 English edition [Springer, Berlin; MR0562104 (81c:12001b)]; Edited and with a preface by Horst Günter Zimmer. · Zbl 1038.11501
[19] Raymond T. Hoobler, A cohomological interpretation of Brauer groups of rings, Pacific J. Math. 86 (1980), no. 1, 89 – 92. · Zbl 0459.13002
[20] Nathan Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996. · Zbl 0874.16002
[21] Max Lieblich, Period and index in the Brauer group of an arithmetic surface, with an appendix by Daniel Krashen, 2007 manuscript. To appear in Crelle’s J. Available at arXiv:math/0702240.
[22] Joseph Lipman, Introduction to resolution of singularities, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 187 – 230.
[23] Richard S. Pierce, Associative algebras, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York-Berlin, 1982. Studies in the History of Modern Science, 9. · Zbl 0497.16001
[24] David J. Saltman, Multiplicative field invariants and the Brauer group, J. Algebra 133 (1990), no. 2, 533 – 544. · Zbl 0729.13006 · doi:10.1016/0021-8693(90)90288-Y
[25] David J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol. 94, Published by American Mathematical Society, Providence, RI; on behalf of Conference Board of the Mathematical Sciences, Washington, DC, 1999. · Zbl 0934.16013
[26] Murray M. Schacher, Subfields of division rings. I, J. Algebra 9 (1968), 451 – 477. · Zbl 0174.34103 · doi:10.1016/0021-8693(68)90015-X
[27] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. · Zbl 0423.12016
[28] Jack Sonn, \?-admissibility of solvable groups, J. Algebra 84 (1983), no. 2, 411 – 419. · Zbl 0524.16007 · doi:10.1016/0021-8693(83)90085-6
[29] Murray Schacher and Jack Sonn, \?-admissibility of \?\(_{6}\) and \?\(_{7}\), J. Algebra 145 (1992), no. 2, 333 – 338. · Zbl 0739.12004 · doi:10.1016/0021-8693(92)90106-V
[30] A. R. Wadsworth, Valuation theory on finite dimensional division algebras, Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999) Fields Inst. Commun., vol. 32, Amer. Math. Soc., Providence, RI, 2002, pp. 385 – 449. · Zbl 1017.16011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.