×

Quantum state targeting. (English) Zbl 1227.81127

Summary: We introduce a primitive for quantum cryptography that we term ‘state targeting’. We show that increasing one’s probability of success in this task above a minimum amount implies an unavoidable increase in the probability of a particular kind of failure. This is analogous to the unavoidable disturbance to a quantum state that results from gaining information about its identity, and can be shown to be a purely quantum effect. We solve various optimization problems for state targeting that are useful for the security analysis of two-party cryptographic tasks implemented between remote antagonistic parties. Although we focus on weak coin flipping, the results are significant for other two-party protocols, such as strong coin flipping, partially binding and concealing bit commitment, and bit escrow. Furthermore, the results have significance not only for the traditional notion of security in cryptography, that of restricting a cheater’s ability to bias the outcome of the protocol, but also for a different notion of security that arises only in the quantum context, that of cheat sensitivity. Finally, our analysis leads to some interesting secondary results, namely, a generalization of Uhlmann’s theorem and an operational interpretation of the fidelity between two mixed states.

MSC:

81P68 Quantum computation
94A60 Cryptography

References:

[1] DOI: 10.1103/PhysRevLett.67.661 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[2] DOI: 10.1103/PhysRevLett.78.3414 · doi:10.1103/PhysRevLett.78.3414
[3] DOI: 10.1103/PhysRevLett.78.3410 · doi:10.1103/PhysRevLett.78.3410
[4] DOI: 10.1103/PhysRevA.65.012310 · doi:10.1103/PhysRevA.65.012310
[5] Spekkens, Quantum Inf. Comput. 2 pp 66– (2002)
[6] Spekkens, Phys. Rev. Lett. 89 pp 227901– (2001)
[7] DOI: 10.1103/PhysRevA.56.1154 · doi:10.1103/PhysRevA.56.1154
[8] Helstrom, in: Quantum Detection and Estimation Theory (1976)
[9] DOI: 10.1002/(SICI)1521-3978(199806)46:4/5<535::AID-PROP535>3.0.CO;2-0 · doi:10.1002/(SICI)1521-3978(199806)46:4/5<535::AID-PROP535>3.0.CO;2-0
[10] DOI: 10.1103/PhysRevA.63.062305 · doi:10.1103/PhysRevA.63.062305
[11] DOI: 10.1103/PhysRev.47.777 · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[12] DOI: 10.1017/S0305004100013554 · JFM 61.1561.03 · doi:10.1017/S0305004100013554
[13] DOI: 10.1017/S0305004100019137 · JFM 62.1613.03 · doi:10.1017/S0305004100019137
[14] DOI: 10.1016/0375-9601(93)90880-9 · doi:10.1016/0375-9601(93)90880-9
[15] DOI: 10.1016/0375-9601(87)90222-2 · doi:10.1016/0375-9601(87)90222-2
[16] DOI: 10.1016/0375-9601(88)90840-7 · doi:10.1016/0375-9601(88)90840-7
[17] DOI: 10.1016/0375-9601(88)91034-1 · doi:10.1016/0375-9601(88)91034-1
[18] Peres, in: Quantum Theory: Concepts and Methods (1995) · Zbl 0867.00010
[19] DOI: 10.1080/09500349414552171 · Zbl 0941.81508 · doi:10.1080/09500349414552171
[20] Nielsen, in: Quantum Computation and Quantum Information (2000)
[21] DOI: 10.1103/PhysRevA.67.012304 · doi:10.1103/PhysRevA.67.012304
[22] DOI: 10.1103/PhysRevA.68.010301 · doi:10.1103/PhysRevA.68.010301
[23] DOI: 10.1103/PhysRevLett.92.157901 · doi:10.1103/PhysRevLett.92.157901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.