×

Signal processing, Sobol sequences and hot sampling: calculation of incident heat flux distributions surrounding diffusion flames. (English) Zbl 1227.80046

Summary: The calculation of the incident heat flux distribution external to a jet fire is a challenging task due to the ray effect. In this paper a new adaptive stochastic quadrature method called hot sampling is described. The new methodology is applied to the incident heat flux distribution surrounding a lifted natural gas jet fire. Hot sampling is demonstrated to be significantly more efficient than other reverse Monte Carlo methods. The new quadrature scheme is also shown to be more efficient than the discrete transfer method, a radiation methodology in common use for jet fire simulation. Hot sampling is particularly appealing for problems where the ray effect is significant as the bigger the ray effect the bigger the benefit of using an adaptive stochastic quadrature scheme.

MSC:

80A25 Combustion
80A20 Heat and mass transfer, heat flow (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
80M31 Monte Carlo methods applied to problems in thermodynamics and heat transfer

Software:

GENMIX
Full Text: DOI

References:

[1] S.M. Jeng, L.D. Chen, G.M. Faeth, The structure of buoyant methane and propane diffusion flames, in: Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982, pp. 349 – 358.
[2] Fairweather, M.; Jones, W. P.; Lindstedt, R. P.: Predictions of radiative heat transfer from a turbulent reacting jet in a cross-wind, Combust. flame 89, 45-63 (1992)
[3] Caulfield, M.; Cook, D. K.; Docherty, P.; Fairweather, M.: An integral model of turbulent jets in a cross-flow, Part 2 – trans. Icheme process safety environ. Protect. 71 Part B, 243-251 (1993)
[4] Cleaver, R. P.; Cumber, P. S.; Fairweather, M.: Predictions of sonic jet fires, Combust. flame 132, 463-474 (2003)
[5] Birch, A. D.; Brown, D. R.; Fairweather, M.; Hargrave, G. K.: An experimental study of a turbulent natural gas jet in a cross-flow, Combust. sci. Technol. 66, 217-232 (1989)
[6] D.K. Cook, P.S. Cumber, M. Fairweather, F. Shemirani, Modelling free and impacting underexpanded jet fires, in: IChemE Symposium Series, No. 141, The Institution of Chemical Engineers, Rugby, 1997, pp. 127 – 138.
[7] Cumber, P. S.; Fairweather, M.; Ledin, S.: Application of wide band radiation models to non-homogeneous combustion systems, Int. J. Heat mass transfer 41, 1573-1584 (1998)
[8] Grosshandler, W. L.: Radiative heat transfer in non-homogeneous gases: a simplified approach, Int. J. Heat mass transfer 23, 1447-1459 (1980)
[9] Lathrop, K. D.: Ray effects in discrete ordinates equations, Nucl. sci. Eng. 32, 357-369 (1968)
[10] Lathrop, K. D.: Remedies for ray effects, Nucl. sci. Eng. 45, 255-268 (1971)
[11] Chai, J. C.; Haeok, S. L.; Patankar, S. V.: Ray effect and false scattering in the discrete ordinates method, Numer. heat transfer, part B 24, 373-389 (1993)
[12] Cumber, P. S.: Efficient calculation of the radiation heat flux surrounding a jet fire, Fire safety J. 44, 580-589 (2009)
[13] Cumber, P. S.: Measuring radiation heat fluxes from a jet fire using a lumped capacitance model, J. fire technol. 47, 665-685 (2011)
[14] Jeng, S. M.; Faeth, G. M.: Radiative heat fluxes near turbulent buoyant methane diffusion flames, ASME J. Heat transfer 106, 886-888 (1984)
[15] Fiveland, W. A.: Three-dimensional radiative heat transfer solutions by the discrete-ordinates method, J. thermophys. 2, 309-316 (1988)
[16] Thurgood, C. P.; Pollard, A.; Becker, H. A.: The TN quadrature set for the discrete ordinates method, ASME, J. heat transfer 117, 1068-1069 (1995)
[17] F.C. Lockwood, N.G. Shah, A new radiation solution method for incorporation in general combustion prediction procedures, in: Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1981, pp. 1405 – 1414.
[18] Cumber, P. S.: Improvements to the discrete transfer method of calculating radiative heat transfer, Int. J. Heat mass transfer 38, 2251-2258 (1995) · Zbl 0923.76216 · doi:10.1016/0017-9310(94)00354-X
[19] Cumber, P. S.: Ray effect mitigation in jet fire radiation modelling, Int. J. Heat mass transfer 43, 935-943 (2000) · Zbl 0967.80500 · doi:10.1016/S0017-9310(99)00172-6
[20] Cumber, P. S.: Application of adaptive quadrature to fire radiation modelling. ASME, J. heat transfer 121, 203-205 (1999)
[21] Cumber, P. S.; Fairweather, M.; Falle, S. A. E.G.; Giddings, J. R.: Predictions of the structure of turbulent moderately underexpanded jets, ASME J. Fluids eng. 116, 707-713 (1994)
[22] Cumber, P. S.; Fairweather, M.; Falle, S. A. E.G.; Giddings, J. R.: Predictions of the structure of turbulent highly underexpanded jets, ASME J. Fluids eng. 117, 599-604 (1995)
[23] Cumber, P. S.; Fairweather, M.; Falle, S. A. E.G.; Giddings, J. R.: Predictions of impacting sonic and supersonic jets, ASME J. Fluids eng. 119, 83-89 (1997)
[24] Siegel, R.; Howell, J. R.: Thermal radiation heat transfer, (1992)
[25] M.Y. Choi, A. Hamins, H. Rushmeier, T. Kashiwagi, Simultaneous optical measurement of soot volume fraction, temperature and CO2 in heptane pool fire, in: 25th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1994, pp. 1471 – 1480.
[26] Sobol, I. M.: Uniformly distributed sequences with an additional uniform property, USSR comput. Math. math. Phys. 16, 236-242 (1977) · Zbl 0391.10033 · doi:10.1016/0041-5553(76)90154-3
[27] Keister, B. D.: Multidimensional quadrature algorithms, Comput. phys. 10, 119-122 (1996) · Zbl 0869.65017
[28] P. L’Ecuyer, Quasi-Monte Carlo methods in finance, in: R.G. Ingalls, M.D. Rossetti, J.S. Smith, B.A. Peters (Eds.), IEEE, Proceedings Winter Simulation Conference, 2004, pp. 1645 – 1655.
[29] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical recipes in Fortran 77, (1992) · Zbl 0778.65002
[30] Antonov, I. A.; Saleev, V. M.: An economic method of computing LP tau-sequences, USSR comput. Math. math. Phys. 19, 252-256 (1979) · Zbl 0432.65006 · doi:10.1016/0041-5553(79)90085-5
[31] Spalding, D. B.: GENMIX: A general computer program for two-dimensional parabolic phenomena, (1977)
[32] M. Fairweather, W.P. Jones, S. Ledin, P. Lindstedt, Predictions of soot formation in turbulent non-premixed propane flames, in: 24th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1992, pp. 1067 – 1074.
[33] Cumber, P. S.; Spearpoint, M.: Modelling lifted methane jet fires using the boundary layer equations, J. numer. Heat transfer part B 49, 239-258 (2006)
[34] Onokpe, O.; Cumber, P. S.: Modelling lifted hydrogen jet fires using the boundary layer equations, J. thermal eng. 29, 1383-1390 (2009)
[35] Jones, W. P.; Launder, B. E.: The prediction of laminarization with a two equation model of turbulence, Int. J. Heat mass transfer 15, 301-314 (1972)
[36] Pope, S. B.: An explanation of the turbulent round-jet/plane-jet anomaly, Aiaa j. 16, 279-281 (1978)
[37] J.B. Moss, C.D. Stewart, K. Syed, Flow field modelling of soot formation at elevated pressure, in: 22nd Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988, pp. 413 – 423.
[38] Sanders, J. P. H.; Lamers, A. P. G.G.: Modeling and calculation of turbulent lifted diffusion flames, Combust. flame 96, 22-33 (1994)
[39] Cumber, P. S.; Spearpoint, M.: A computational flame length methodology for propane jet fires, Fire safety J. 41, 215-228 (2007)
[40] Jeng, S. M.; Lai, M. C.; Faeth, G. M.: Nonluminous radiation in turbulent buoyant axisymmetric flames, Combust. sci. Technol. 40, 41-53 (1984)
[41] W.L. Grosshandler, RADCAL: a narrow-band model for radiation calculations in a combustion environment, NIST Technical Note 1402, 1993.
[42] Cumber, P. S.; Fairweather, M.: Evaluation of flame emission models combined with the discrete transfer method for combustion system simulation, Int. J. Heat mass transfer 48, 5221-5239 (2005) · Zbl 1188.76273 · doi:10.1016/j.ijheatmasstransfer.2005.07.032
[43] Kalghatgi, G. T.: Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air, Combust. sci. Technol. 41, 17-29 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.