×

Direct simulation of turbulent heat transfer in swept flow over a wire in a channel. (English) Zbl 1227.80033

Summary: We investigate heat transfer characteristics of a turbulent swept flow in a channel with a wire placed over one of its walls using direct numerical simulation. This geometry is a model of the flow through the wire-wrapped fuel pins, the heat exchanger, typical of many civil nuclear reactor designs. The swept flow configuration generates a recirculation bubble with net mean axial flow. A constant inward heat flux from the walls of the channel is applied. A key aspect of this flow is the presence of a high temperature region at the contact line between the wire and the channel wall, due to thermal confinement (stagnation). We analyze the variation of the temperature in the recirculation bubble at Reynolds number based on the bulk velocity along the wire-axis direction and the channel half height of 5400. Four cases are simulated with different flowrates transverse to the wire-axis direction. This configuration is topologically similar to backward-facing steps or slots with swept flow, except that the dominant flow is along the obstacle axis in the present study and the crossflow is smaller than the axial flow, i.e., the sweep angle is large. The temperature field is simulated at three different Prandtl numbers: \(10^{ - 2}, 10^{ - 1}\) and 1. The lower value of Prandtl number is characteristic of experimental high-temperature reactors that use a molten salt as coolant while the high value is typical of gas (or water vapor) heat exchangers. In addition, mean temperature, turbulence statistics, instantaneous wall temperature distribution and Nusselt number variation are investigated. The peak Nusselt number occurs close to the reattachment location, on the lee side of the wire, and is about 50 – 60% higher compared to the case without crossflow. The high temperature region follows the growth of the recirculation bubble which increases by about 65% from the lowest to highest amount of crossflow. Particular attention is devoted to the temperature distribution on the walls of the channel and the surface of the wire. The behavior of the heat-flux across the mean dividing streamline of the recirculation bubble is investigated to quantify the local heat transfer rates occurring in this region.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76F65 Direct numerical and large eddy simulation of turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
76M22 Spectral methods applied to problems in fluid mechanics
80M22 Spectral, collocation and related (meshless) methods applied to problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Ota, T.: Survey of heat transfer in separated and reattached flows, Appl. mech. Rev. 53, 219-235 (2000)
[2] Nishiyama, H.; Ota, T.; Sato, K.: Temperature fluctuations in a separated and reattached turbulent flow over a blunt flat plate, Wärme-und stoffübertragung 23, 275-281 (1988)
[3] Vogel, J. C.; Eaton, J. K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step, J. heat mass transfer 107, 922-929 (1985)
[4] Sparrow, E. M.; Kang, S. S.; Chuck, W.: Relation between the points of flow reattachment and maximum heat transfer for regions of flow separation, Int. J. Heat mass transfer 30, 1237-1246 (1987)
[5] Ota, T.; Nishiyama, H.: A correlation of maximum turbulent heat transfer coefficient in reattachment flow region, Int. J. Heat mass transfer 30, 1193-1200 (1987)
[6] Abe, K.; Kondoh, T.; Nagano, Y.: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows – II. Thermal field calculations, Int. J. Heat mass transfer 38, 1467-1481 (1995) · Zbl 0922.76227 · doi:10.1016/0017-9310(94)00252-Q
[7] Abu-Mulaweh, H. I.; Chen, T. S.; Armaly, B. F.: Turbulent natural convection flow over a backward-facing step, Exp. heat transfer 12, 295-308 (1999) · Zbl 0978.76504
[8] Avancha, R. V. R.; Pletcher, R. H.: Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations, Int. J. Heat fluid flow 23, 601-614 (2002)
[9] Heyerichs, K.; Pollard, A.: Heat transfer in separated and impinging turbulent flows, Int. J. Heat mass transfer 39, 2385-2400 (1996) · Zbl 0964.76513 · doi:10.1016/0017-9310(95)00347-9
[10] Chen, Y. T.; Nie, J. H.; Armaly, B. F.; Hsieh, H. T.: Turbulent separated convection flow adjacent to backward-facing step-effects of step height, Int. J. Heat mass transfer 49, 3670-3680 (2006) · Zbl 1189.76280 · doi:10.1016/j.ijheatmasstransfer.2006.02.024
[11] Lan, H.; Armaly, B. F.; Drallmeier, J. A.: Three-dimensional simulation of turbulent forced convection in a duct with backward-facing step, Int. J. Heat mass transfer 52, 1690-1700 (2009) · Zbl 1157.80349 · doi:10.1016/j.ijheatmasstransfer.2008.09.022
[12] Tsou, F. K.; Chen, S. -J.; Aung, W.: Starting flow and heat transfer downstream of a backward-facing step, J. heat transfer 113, 583-589 (1991)
[13] Keating, A.; Piomelli, U.; Bremhorst, K.; Nes&breve, S.; Ić: Large eddy simulation of heat transfer downstream of a backward-facing step, J. turbul. 5, 1-27 (2004)
[14] Rhee, G. H.; Sung, H. J.: Enhancement of heat transfer in turbulent separated and reattaching flow by local forcing, Numer. heat transfer A 37, 733-753 (2000)
[15] Labbé, O.; Sagaut, P.; Montreuil, E.: Large-eddy simulation of heat transfer over a backward-facing step, Numer. heat transfer A 42, 73-90 (2002)
[16] Sugawara, K.; Yoshikawa, H.; Ota, T.: LES of turbulent separated flow and heat transfer in a symmetric expansion plane channel, J. fluids eng. 127, 865-871 (2005)
[17] Terekhov, V. I.; Yarigina, N. I.; Zhdanov, R. F.: Heat transfer in turbulent separated flows in the presence of high free-stream turbulence, Int. J. Heat mass transfer 46, 4535-4551 (2003)
[18] Abu-Nada, E.; Al-Sarkhi, A.; Akash, B.; Al-Hinti, I.: Heat transfer and fluid flow characteristics of separated flows encountered in a backward-facing step under the effect of suction and blowing, J. heat transfer 129, 1517-1528 (2007)
[19] Kitoh, A.; Sugawara, K.; Yoshikawa, H.; Ota, T.: Expansion ratio effects on three-dimensional separated flow and heat transfer around backward-facing steps, J. heat transfer 129, 1141-1155 (2007)
[20] Abu-Mulaweh, H.: Investigations on the effect of backward-facing and forward-facing steps on turbulent mixed-convection flow over a flat plate, Exp. heat transfer 22, 117-127 (2009)
[21] Nassab, S. A. G.; Moosavi, R.; Sarvari, S. M. H.: Turbulent forced convection flow adjacent to inclined forward step in a duct, Int. J. Therm. sci. 48, 1319-1326 (2009)
[22] Hourigan, K.; Welch, L. W.; Thompson, M. C.; Cooper, P. I.; Welsh, M. C.: Augmented forced convection heat transfer in separated flow around a blunt flat plate, Exp. therm. Fluid sci. 4, 182-191 (1991)
[23] Tafti, D.: Vorticity dynamics and scalar transport in separated and reattached flow on a blunt plate, Phys. fluids A 5, 1661-1673 (1993) · Zbl 0800.76107 · doi:10.1063/1.858843
[24] Rhee, G. H.; Sung, H. J.: A nonlinear low-Reynolds-number k – &z.epsi; model for turbulent separated and reattaching flows – ii. Thermal field computations, Int. J. Heat mass transfer 39, 3465-3474 (1996)
[25] Marty, P.; Michel, F.; Tochon, P.: Experimental and numerical study of heat transfer along a blunt flat plate, Int. J. Heat mass transfer 51, 13-23 (2008) · Zbl 1140.80348 · doi:10.1016/j.ijheatmasstransfer.2007.04.036
[26] Nagano, Y.; Hattori, H.; Houra, T.: DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness, Int. J. Heat fluid flow 25, 393-403 (2004)
[27] Liou, T. -M.; Hwang, J. -J.; Chen, S. -H.: Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall, Int. J. Heat mass transfer 36, 507-517 (1993)
[28] Tariq, A.; Singh, K.; Panigrahi, P.: Flow and heat transfer in a rectangular duct with single rib and two ribs mounted on the bottom surface, J. enhanc. Heat transfer 10, 171-198 (2003)
[29] Hsieh, K. J.; Lien, F. S.: Conjugate turbulent forced convection in a channel with an array of ribs, Int. J. Numer. methods heat fluid flow 15, 462-482 (2005)
[30] Acharya, S.; Dutta, S.; Myrum, T. A.: Heat transfer in turbulent flow past a surface-mounted two-dimensional rib, J. heat transfer 120, 724-734 (1998)
[31] Rau, G.; Cakan, M.; Moeller, D.; Arts, T.: The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel, J. turbomach. 120, 368-375 (1998)
[32] Han, J. C.; Park, J. S.: Developing heat transfer in rectangular channels with rib turbulators, Int. J. Heat mass transfer 31, 183-195 (1988)
[33] Rivir, R. B.; Johnston, J. P.; Eaton, J. K.: Heat transfer on a flat surface under a region of turbulent separation, J. turbomach. 116, 57-62 (1994)
[34] Spalart, P. R.; Strelets, M. K.: Mechanisms of transition and heat transfer in a separation bubble, J. fluid mech. 403, 329-349 (2000) · Zbl 0972.76046 · doi:10.1017/S0022112099007077
[35] Choi, H. S.; Suzuki, K.: Large eddy simulation of turbulent flow and heat transfer in a channel with one wavy wall, Int. J. Heat fluid flow 26, 681-694 (2005)
[36] Pham, M. V.; Plourde, F.; Doan, S. K.: Turbulent heat and mass transfer in sinusoidal wavy channels, Int. J. Heat fluid flow 29, 1240-1257 (2008)
[37] Houra, T.; Nagano, Y.: Turbulent heat and fluid flow over a two-dimensional Hill, Flow turbul. Combust. 83, 389-406 (2009) · Zbl 1422.76003
[38] Medwell, J.; Morris, W.; Xia, J.; Taylor, C.: An investigation of convective heat transfer in a rotating coolant channel, J. turbomach. 113, 354-359 (1991)
[39] Ryu, D.; Choi, D.; Patel, V.: Analysis of turbulent flow in channels roughened by two-dimensional ribs and three-dimensional blocks: part II: Heat transfer, Int. J. Heat fluid flow 28, 1112-1124 (2007)
[40] Takase, K.: Experimental and analytical studies on turbulent heat transfer performance of a fuel rod with spacer ribs for high temperature gas-cooled reactors, Nucl. eng. Des. 154, 345-356 (1995)
[41] Suh, Y.; Lightstone, M.: Numerical simulation of turbulent flow and mixing in a rod bundle geometry, Nucl. energ. J. br. Nucl. energ. Soc. 43, 153-163 (2004)
[42] Gou, J.; Shang, Z.; Ishiwarari, Y.; Oka, Y.; Yamakawa, M.; Ikejiri, S.: CFD analysis of heat transfer in subchannels of a super fast reactor, Nucl. eng. Des. 240, 1819-1829 (2010)
[43] Kim, W.; He, S.; Jackson, J.: Assessment by comparison with DNS data of turbulence models used in simulations of mixed convection, Int. J. Heat mass transfer 51, 1293-1312 (2008) · Zbl 1137.80004 · doi:10.1016/j.ijheatmasstransfer.2007.12.002
[44] P. Fischer, J. Lottes, A. Siegel, G. Palmiotti, Large eddy simulation of wire-wrapped fuel pins I: hydrodynamics in a periodic array, in: Joint International Topical Meeting on Mathematics and Computation and Supercomputing in Nuclear Applications, Monterey, CA, pp. 1 – 7.
[45] Ranjan, R.; Pantano, C.; Fischer, P.: Direct simulation of turbulent swept flow over a wire in a channel, J. fluid mech. 651, 165-209 (2010) · Zbl 1189.76319 · doi:10.1017/S0022112009993958
[46] Hébrard, J.; Métais, O.; Salinas-Vasquez, M.: Large-eddy simulation of turbulent duct flow: heating and curvature effects, Int. J. Heat fluid flow 25, 569-580 (2004)
[47] Mathews, R.; Balaji, C.; Sundararajan, T.: Computation of conjugate heat transfer in the turbulent mixed convection regime in a vertical channel with multiple heat sources, Heat mass transfer 43, 1063-1074 (2007)
[48] Raza, W.; Kim, K. -Y.: Comparative analysis of flow and convective heat transfer between 7-pin and 19-pin wire-wrapped fuel assemblies, J. nucl. Sci. technol. 45, 653-661 (2008)
[49] Horiuti, K.: Assessment of two-equation models of turbulent passive-scalar diffusion in channel flow, J. fluid mech. 238, 405-433 (1992)
[50] Kasagi, N.; Kuroda, A.; Hirata, M.: Numerical investigation of near-wall turbulent heat transfer taking into account the unsteady heat conduction in the solid wall, J. heat transfer 111, 385-392 (1989)
[51] Tiselj, I.; Bergant, R.; Mavko, B.; Bajsić, I.; Hetsroni, G.: Dns of turbulent heat transfer in channel flow with heat conduction in the solid wall, J. heat transfer 123, 849-857 (2001)
[52] Jeong, J.; Hussain, F.: On the identification of a vortex, J. fluid mech. 285, 69-94 (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[53] Song, S.; Eaton, J. K.: Flow structures of a separating, reattaching, and recovering boundary layer for a large range of Reynolds number, Exp. fluids 36, 642-653 (2004)
[54] Le, H.; Moin, P.; Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step, J. fluid mech. 330, 349-374 (1997) · Zbl 0900.76367 · doi:10.1017/S0022112096003941
[55] Lee, I.; Sung, H. J.: Multiple-arrayed pressure measurement for investigation of the unsteady flow structure of a reattaching shear layer, J. fluid mech. 463, 377-402 (2002) · Zbl 1012.76508 · doi:10.1017/S002211200200890X
[56] Kaltenbach, H. -J.; Janke, G.: Direct numerical simulation of flow separation behind a swept, rearward-facing step at reh=3000, Phys. fluids 12, 2320 (2000) · Zbl 1184.76263 · doi:10.1063/1.1287338
[57] Sheu, T. W. H.; Rani, H. P.: Exploration of vortex dynamics for transitional flows in a three-dimensional backward-facing step channel, J. fluid mech. 550, 61-83 (2006) · Zbl 1222.76041 · doi:10.1017/S0022112005007858
[58] R.D. Henderson, Unstructured Spectral Element Methods: Parallel Algorithms and Simulations, Ph.D. Thesis, Princeton University, 1994.
[59] Henderson, R. D.; Karniadakis, G. E.: Unstructured spectral element methods for simulation of turbulent flows, J. comp. Phys. 122, 191-217 (1995) · Zbl 0840.76070 · doi:10.1006/jcph.1995.1208
[60] Tennekes, H.; Lumley, J. L.: A first course in turbulence, (1972) · Zbl 0285.76018
[61] Kim, J.; Moin, P.: Transport of passive scalars in a turbulent channel flow, Turbulent shear flows 6, 85-96 (1989)
[62] Kawamura, H.; Abe, H.; Matsuo, Y.: DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects, Int. J. Heat fluid flow 20, 196-207 (1999)
[63] Kasagi, N.; Tomita, Y.; Kuroda, A.: Direct numerical simulation of passive scalar field in a turbulent channel flow, J. heat transfer 114, 598-606 (1992)
[64] Y. Iritani, N. Kasagi, M. Hirata, Heat transfer mechanism and associated turbulence structure in the near-wall region of a turbulent boundary layer, in: Symposium on Turbulent Shear Flows, Karlsruhe, Germany, vol. 4, 1983, pp. 17.31 – 17.36.
[65] Debusschere, B.; Rutland, C. J.: Turbulent scalar transport mechanisms in plane channel and Couette flows, Int. J. Heat mass transfer 47, 1771-1781 (2004) · Zbl 1045.76529 · doi:10.1016/j.ijheatmasstransfer.2003.10.031
[66] Spalart, P. R.; Coleman, G. N.: Numerical study of a separation bubble with heat transfer, Eur. J. Mech. B. Fluids 16, 169-189 (1997) · Zbl 0875.76424
[67] Kawamura, H.; Ohsaka, K.; Abe, H.; Yamamoto, K.: DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid, Int. J. Heat fluid flow 19, 482-491 (1998)
[68] Schwertfirm, F.; Manhart, M.: DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers, Int. J. Heat fluid flow 28, 1204-1214 (2007)
[69] Antonia, R. A.; Kim, J.: Turbulent Prandtl number in the near-wall region of a trubulent channel flow, Int. J. Heat mass transfer 34, 1905-1908 (1991)
[70] Nepomuceno, H. G.; Lueptow, M.: Pressure and shear stress measurements at the wall in a turbulent boundary layer on a cylinder, Phys. fluids 9, 2732 (1997)
[71] Kader, B. A.: Temperature and concentration profiles in fully turbulent boundary layers, Int. J. Heat mass transfer 24, 1541-1544 (1981)
[72] Na, Y.; Hanratty, T. J.: Limiting behavior of turbulent scalar transport close to a wall, Int. J. Heat mass transfer 43, 1749-1758 (2000) · Zbl 1094.76519 · doi:10.1016/S0017-9310(99)00258-6
[73] Abu-Mulaweh, H.: Turbulent natural-convection flow over a vertical forward-facing step, Exp. heat transfer 15, 49-69 (2002)
[74] Spalding, D. B.: Heat transfer from turbulent separated flows, J. fluid mech. 27, 97-109 (1967)
[75] Rogers, M. M.; Moser, R. D.: Direct simulation of a self-similar turbulent mixing layer, Phys. fluids 6, 903-923 (1994) · Zbl 0825.76329 · doi:10.1063/1.868325
[76] Higuera, F.; Jimenez, J.; Linan, A.: Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity, , 207-215 (1996)
[77] Patankar, S.; Liu, C.; Sparrow, E.: Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area, J. heat transfer 99, 180-186 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.