×

An optimal-order \(L^2\)-error estimate for nonsymmetric discontinuous Galerkin methods for a parabolic equation in multiple space dimensions. (English) Zbl 1227.65085

Summary: We analyze the nonsymmetric discontinuous Galerkin methods (NIPG and IIPG) for linear elliptic and parabolic equations with a spatially varied coefficient in multiple spatial dimensions. We consider \(d\)-linear approximation spaces on a uniform rectangular mesh, but our results can be extended to smoothly varying rectangular meshes. Using a blending or Boolean interpolation, we obtain a superconvergence error estimate in a discrete energy norm and an optimal-order error estimate in a semi-discrete norm for the parabolic equation. The \(L^{2}\)-optimality for the elliptic problem follows directly from the parabolic estimates. Numerical results are provided to validate our theoretical estimates. We also discuss the impact of penalty parameters on convergence behaviors of NIPG.

MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76R50 Diffusion
Full Text: DOI

References:

[1] D.N. Arnold, An interior penalty finite element method with discontinuous elements, Ph.D. Thesis, The University of Chicage, Chicago, IL, 1979.; D.N. Arnold, An interior penalty finite element method with discontinuous elements, Ph.D. Thesis, The University of Chicage, Chicago, IL, 1979.
[2] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760 (1982) · Zbl 0482.65060
[3] C.E. Baumann, An HP-adaptive discontinuous finite element method for computational fluid dynamics, Ph.D. Thesis, The University of Texas at Austin, 1997.; C.E. Baumann, An HP-adaptive discontinuous finite element method for computational fluid dynamics, Ph.D. Thesis, The University of Texas at Austin, 1997.
[4] Chen, H., Superconvergence properties of discontinuous Galerkin methods for two-point boundary value problems, Int. J. Numer. Anal. Model., 3, 2, 163-185 (2006) · Zbl 1110.65074
[5] Chen, Z.; Chen, H., Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems, SIAM J. Numer. Anal., 42, 3, 1146-1166 (2004) · Zbl 1081.65102
[6] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[7] B. Cockburn, G.E. Karniadakis, C.W. Shu, The development of the discontinuous Galerkin methods, in: First International Symposium on Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, 2000, pp. 3-50.; B. Cockburn, G.E. Karniadakis, C.W. Shu, The development of the discontinuous Galerkin methods, in: First International Symposium on Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, 2000, pp. 3-50. · Zbl 0989.76045
[8] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998), (electronic) · Zbl 0927.65118
[9] Dawson, C.; Sun, S.; Wheeler, M. F., Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Engrg., 193, 2565-2580 (2004) · Zbl 1067.76565
[10] Delvos, F-J; Schempp, W., Boolean Methods in Interpolation and Approximation (1989), Longman Scientific & Technical · Zbl 0698.41032
[11] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Rhode Island, 1998.; L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Rhode Island, 1998. · Zbl 0902.35002
[12] Karakashian, O. A.; Pascal, F., A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41, 6, 2374-2399 (2003) · Zbl 1058.65120
[13] Larson, M. G.; Niklasson, A. J., Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates, SIAM J. Numer. Anal., 42, 1, 252-264 (2004) · Zbl 1078.65106
[14] Larson, M. G.; Niklasson, A. J., Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case, Numer. Math., 99, 1, 113-130 (2004) · Zbl 1064.65082
[15] Oden, J. T.; Babuška, I.; Baumann, C. E., A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146, 491-516 (1998) · Zbl 0926.65109
[16] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report, Los Alamos Scientific Laboratory, 1973.; W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report, Los Alamos Scientific Laboratory, 1973.
[17] Rivière, B.; Wheeler, M. F., Non conforming methods for transport with nonlinear reaction, Contemp. Math., 295, 421-432 (2002) · Zbl 1068.76053
[18] Rivière, B.; Wheeler, M. F.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39, 3, 902-931 (2001) · Zbl 1010.65045
[19] Schötzau, D.; Schwab, C., Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38, 837-875 (2001) · Zbl 0978.65091
[20] Schötzau, D.; Schwab, C.; Toselli, A., Stabilized hp-dgfem for incompressible flow, Math. Models Methods Appl. Sci., 13, 1413-1436 (2003) · Zbl 1050.76034
[21] Ch. Schwab, p- and hp-Finite Element Methods, Theory and Applications in Solid and Fluid Mechanics, Oxford Science Publications, 1998.; Ch. Schwab, p- and hp-Finite Element Methods, Theory and Applications in Solid and Fluid Mechanics, Oxford Science Publications, 1998. · Zbl 0910.73003
[22] S. Sun, Discontinuous Galerkin methods for reactive transport in porous media, Ph.D. Thesis, The University of Texas at Austin, 2003.; S. Sun, Discontinuous Galerkin methods for reactive transport in porous media, Ph.D. Thesis, The University of Texas at Austin, 2003.
[23] S. Sun, B. Rivière, M.F. Wheeler, A combined mixed finite element and discontinuous Galerkin method for miscible displacement problems in porous media, in: Recent Progress in Computational and Applied PDEs, Conference Proceedings for the International Conference, Zhangjiaje, July 2001, pp. 321-348.; S. Sun, B. Rivière, M.F. Wheeler, A combined mixed finite element and discontinuous Galerkin method for miscible displacement problems in porous media, in: Recent Progress in Computational and Applied PDEs, Conference Proceedings for the International Conference, Zhangjiaje, July 2001, pp. 321-348.
[24] Sun, S.; Wheeler, M. F., Discontinuous Galerkin methods for coupled flow and reactive transport problems, Appl. Numer. Math., 52, 2-3, 273-298 (2005) · Zbl 1079.76584
[25] Sun, S.; Wheeler, M. F., Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media, SIAM J. Numer. Anal., 43, 1, 195-219 (2005) · Zbl 1086.76043
[26] Sun, S.; Wheeler, M. F., A dynamic, adaptive, locally conservative and nonconforming solution strategy for transport phenomena in chemical engineering, Chem. Engrg. Commun., 193, 1527-1545 (2006)
[27] Sun, S.; Wheeler, M. F., Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport, Comput. Methods Appl. Mech. Engrg., 195, 3382-3405 (2006) · Zbl 1175.76096
[28] Wheeler, M. F., An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15, 152-161 (1978) · Zbl 0384.65058
[29] Wheeler, M. F.; Sun, S.; Eslinger, O.; Rivière, B., Discontinuous Galerkin method for modeling flow and reactive transport in porous media, (Wendland, W., Analysis and Simulation of Multifield Problem (2003), Springer-Verlag: Springer-Verlag Berlin), 37-58, August · Zbl 1271.76176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.