×

An invariant subspace method for large-scale algebraic Riccati equation. (English) Zbl 1227.65053

The linear time-invariant dynamical system
\[ \begin{cases} \dot x(t) = Ax(t) + Bu(t),\quad x(0)=x_0,\\ y(t) ~=~ Cx(t), \end{cases} \tag{S} \]
where \(A\), \(B\), \(C\) are matrices, is considered. In practice the square matrix \(A\) is \(n \times n\), and \(n\) is very large (of the order \(10^5\) or \(10^6\)). The authors are interested in the feedback control of the system (S), the corresponding cost functional being quadratic in an infinite horizon. Therefore, a new family of low-rank approximations of the solution of the algebraic Riccati equation is introduced. It is based on invariant subspaces of the Hamiltonian matrix. The stabilizing property of the feedback is obtained. In particular, the exact stabilizing solution of the Bernoulli equation is obtained. Numerical examples are presented.

MSC:

65K10 Numerical optimization and variational techniques
93C05 Linear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
93B52 Feedback control

Software:

eigs; ARPACK; CAREX; IRAM
Full Text: DOI

References:

[3] Anderson, B. D.O.; Moore, J. B., Linear Optimal Control (1971), Prentice-Hall Inc.: Prentice-Hall Inc. Englewood Cliffs, NJ · Zbl 0169.21902
[4] Antoulas, A. C., Approximation of Large-Scale Dynamical Systems, Advances in Design and Control, vol. 6 (2005), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1112.93002
[5] Antoulas, A. C.; Sorensen, D. C., Approximation of large-scale dynamical systems: An overview, Int. J. Appl. Math. Comput. Sci., 11, 5, 1093-1121 (2001) · Zbl 1024.93008
[6] Bai, Z.; Demmel, J., Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix Anal. Appl., 19, 1, 205-225 (1998), (electronic) · Zbl 0914.65035
[7] Banks, H. T.; Brown, D. E.; Metcalf, V. L.; Silcox, R. J.; Smith, R. C.; Wang, Y., A PDE-based methodology for modeling, parameter estimation and feedback control in structural and structural acoustic systems, (Center for Research in Scientific Computation (1994), North Carolina State University: North Carolina State University Raleigh, NC), 311-320
[8] Barrachina, S.; Benner, P.; Quintana-Ortí, E. S., Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function, Numer. Algorithms, 46, 4, 351-368 (2007) · Zbl 1132.65033
[9] Bartels, R.; Stewart, G. W., A solution of the equation \(A X + X B = C\), Comm. ACM, 15, 820-826 (1972) · Zbl 1372.65121
[12] Benner, P.; Faßbender, H., An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem, Linear Algebra Appl., 263, 75-111 (1997) · Zbl 0884.65028
[13] Benner, P.; Li, J.-R.; Penzl, T., Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems, Numer. Linear Algebra Appl., 15, 9, 755-777 (2008) · Zbl 1212.65245
[14] Benner, P.; Mehrmann, V.; Xu, H., A new method for computing the stable invariant subspace of a real Hamiltonian matrix, J. Comput. Appl. Math., 86, 1, 17-43 (1997) · Zbl 1005.65034
[15] Benner, P.; Mehrmann, V.; Xu, H., A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math., 78, 3, 329-358 (1998) · Zbl 0889.65036
[16] (Bittanti, S.; Laub, A. J.; Willems, J. C., The Riccati Equation. The Riccati Equation, Communications and Control Engineering Series (1991), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0734.34004
[18] Byers, R., Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl., 85, 267-279 (1987) · Zbl 0611.65027
[19] Calvetti, D.; Lewis, B.; Reichel, L., Partial eigenvalue assignment for large linear control systems, (Structured Matrices in Mathematics, Computer Science, and Engineering, I. Structured Matrices in Mathematics, Computer Science, and Engineering, I, Boulder, CO, 1999. Structured Matrices in Mathematics, Computer Science, and Engineering, I. Structured Matrices in Mathematics, Computer Science, and Engineering, I, Boulder, CO, 1999, Contemp. Math., vol. 280 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 241-254 · Zbl 1011.93055
[20] Curtain, R. F.; Zwart, H., An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, vol. 21 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0839.93001
[21] Datta, B. N., Numerical Methods for Linear Control Systems. Design and Analysis (2004), Elsevier Academic Press: Elsevier Academic Press San Diego, CA · Zbl 1079.65072
[22] Ferng, W. R.; Lin, W.-W.; Wang, C.-S., The shift-inverted \(J\)-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations, Comput. Math. Appl., 33, 10, 23-40 (1997) · Zbl 0889.65034
[24] Jaimoukha, I. M.; Kasenally, E. M., Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31, 1, 227-251 (1994) · Zbl 0798.65060
[25] Jbilou, K., Block Krylov subspace methods for large algebraic Riccati equations, Numer. Algorithms, 34, 2-4, 339-353 (2003) · Zbl 1045.65036
[26] Jbilou, K., An Arnoldi based algorithm for large algebraic Riccati equations, Appl. Math. Lett., 19, 5, 437-444 (2006) · Zbl 1094.65038
[27] Jbilou, K.; Heyouni, M., An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation, ETNA, 33, 53-62 (2009) · Zbl 1171.65035
[28] Jbilou, K.; Riquet, A. J., Projection methods for large Lyapunov matrix equations, Linear Algebra Appl., 415, 344-358 (2006) · Zbl 1094.65039
[30] Kleinman, D., On an iterative technique for Riccati equation computations, IEEE Trans. Automat. Control, 13, 114-115 (1968)
[31] Lancaster, P.; Rodman, L., Algebraic Riccati Equations, Oxford Science Publications (1995), The Clarendon Press/Oxford University Press: The Clarendon Press/Oxford University Press New York · Zbl 0836.15005
[32] Laub, A. J., A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Control, 24, 913-925 (1979) · Zbl 0424.65013
[33] Lauga, E.; Bewley, T. R., The decay of stabilizability with Reynolds number in a linear model of spatially developing flows, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459, 2036, 2077-2095 (2003) · Zbl 1041.76026
[34] Lehoucq, R. B.; Sorensen, D. C.; Yang, C., ARPACK User’s guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods (1998), SIAM: SIAM Philadelphia, software at · Zbl 0901.65021
[35] Li, J.-R.; White, J., Low-rank solution of Lyapunov equation, SIAM J. Matrix Anal. Appl., 24, 1, 260-280 (2002) · Zbl 1016.65024
[36] Mehrmann, V. L., The Autonomous Linear Quadratic Control Problem, Lecture Notes in Control and Information Sciences, vol. 163 (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0746.93001
[37] Penzl, T., A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comp., 21, 1401-1418 (2000) · Zbl 0958.65052
[38] Petkov, P.; Christov, N. D.; Konstantinov, M. M., Computational Methods for Linear Control Systems (1991), Prentice-Hall: Prentice-Hall Hertfordshire, UK · Zbl 0790.93001
[39] Roberts, J. D., Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Internat. J. Control, 32, 4, 677-687 (1980) · Zbl 0463.93050
[40] Rommes, J.; Martins, N., Efficient computation of transfer function dominant poles using subspace acceleration, IEEE Transactions on Power Systems, 21, 3, 1218-1226 (2006)
[41] Saad, Y., Projection and deflation methods for partial pole assignment in linear state feedback, IEEE Trans. Automat. Control, 33, 3, 290-297 (1988) · Zbl 0641.93031
[42] Sima, V., Algorithms for Linear-Quadratic Optimization, Monographs and Textbooks in Pure and Applied Mathematics, vol. 200 (1996), Marcel Dekker Inc.: Marcel Dekker Inc. New York · Zbl 0863.65038
[43] Simoncini, V., A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput., 29, 3, 1268-1288 (2007) · Zbl 1146.65038
[44] Sorensen, D. C., Implicit application of polynomial filters in a \(k\)-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13, 357-385 (1992) · Zbl 0763.65025
[45] Van Dooren, P., A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Statist. Comput., 2, 2, 121-135 (1981) · Zbl 0463.65024
[46] Zhou, K.; Doyle, J. C.; Glover, K., Robust and Optimal Control (1996), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.