×

Real-variable characterizations of Hardy spaces associated with Bessel operators. (English) Zbl 1227.42021

The authors prove characterizations of the atomic Hardy spaces \(H^p((0,\infty),dm_\lambda)\) associated with the Bessel operator \(\Delta_\lambda = -\frac{d^2}{dx^2}-\frac{2\lambda}x\frac d{dx} \), where \(dm_\lambda(x)=x^{2\lambda}dx\), \(p\in ((2\lambda+1)/(2\lambda+2),1]\) and \(\lambda\in(0,\infty)\). The characterizations are given in terms of the radial maximal function, the nontangential maximal function, the grand maximal function, the Littlewood-Paley \(g\)-function and the Lusin area function. Arguments in the proofs are partially based on results and notions introduced by Y.-S. Han, D. Müller and D.-C. Yang in [Math. Nachr. 279, No. 13–14, 1505–1537 (2006; Zbl 1179.42016)] and [Abstr. Appl. Anal. 2008, Article ID 893409 (2008; Zbl 1193.46018)].

MSC:

42B30 \(H^p\)-spaces
42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis

References:

[1] Andersen K. F., Studia Math. 71 pp 15–
[2] DOI: 10.1016/j.jmaa.2009.08.006 · Zbl 1184.42015 · doi:10.1016/j.jmaa.2009.08.006
[3] DOI: 10.1007/s11854-009-0008-1 · Zbl 1195.44023 · doi:10.1007/s11854-009-0008-1
[4] DOI: 10.1017/S0308210505001034 · Zbl 1136.42302 · doi:10.1017/S0308210505001034
[5] DOI: 10.1017/S0017089508004539 · Zbl 1151.42008 · doi:10.1017/S0017089508004539
[6] DOI: 10.4064/sm197-2-1 · Zbl 1201.42018 · doi:10.4064/sm197-2-1
[7] DOI: 10.1090/S0002-9904-1977-14325-5 · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[8] DOI: 10.1007/BF02392215 · Zbl 0257.46078 · doi:10.1007/BF02392215
[9] DOI: 10.1007/978-0-387-09434-2 · Zbl 1158.42001 · doi:10.1007/978-0-387-09434-2
[10] DOI: 10.1007/s11425-008-0057-4 · Zbl 1176.42017 · doi:10.1007/s11425-008-0057-4
[11] Grafakos L., Bull. Soc. Math. France 137 pp 225–
[12] DOI: 10.1090/S0002-9947-1965-0185379-4 · doi:10.1090/S0002-9947-1965-0185379-4
[13] DOI: 10.1002/mana.200610435 · Zbl 1179.42016 · doi:10.1002/mana.200610435
[14] Han Y., Abstr. Appl. Anal. 2008 pp 250–
[15] Hu G., Taiwanese J. Math. 13 pp 91–
[16] DOI: 10.4153/CJM-1978-012-4 · Zbl 0366.44005 · doi:10.4153/CJM-1978-012-4
[17] DOI: 10.1016/0001-8708(79)90012-4 · Zbl 0431.46018 · doi:10.1016/0001-8708(79)90012-4
[18] Macías R. A., Studia Math. 65 pp 55–
[19] DOI: 10.1090/S0002-9947-1965-0199636-9 · doi:10.1090/S0002-9947-1965-0199636-9
[20] Rudin W., International Series in Pure and Applied Mathematics, in: Functional Analysis (1991)
[21] Stein E. M., Princeton Mathematical Series 43, in: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals (1993) · Zbl 0821.42001
[22] DOI: 10.1007/BF02546524 · Zbl 0097.28501 · doi:10.1007/BF02546524
[23] Stempak K., C. R. Acad. Sci. Paris Sér. I Math. 303 pp 15–
[24] Villani M., Illinois J. Math. 52 pp 77–
[25] DOI: 10.1090/S0002-9947-1948-0025023-X · doi:10.1090/S0002-9947-1948-0025023-X
[26] DOI: 10.1016/j.jmaa.2007.07.021 · Zbl 1198.42017 · doi:10.1016/j.jmaa.2007.07.021
[27] DOI: 10.1007/s00208-009-0400-2 · Zbl 1186.42012 · doi:10.1007/s00208-009-0400-2
[28] DOI: 10.1007/s00229-010-0384-y · Zbl 1215.46026 · doi:10.1007/s00229-010-0384-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.