×

Positive solutions for a general Gause-type predator-prey model with monotonic functional response. (English) Zbl 1226.92072

Summary: We study a general Gause-type predator-prey model with monotonic functional response under Dirichlet boundary conditions. Necessary and sufficient conditions for the existence and nonexistence of positive solutions for this system are obtained by means of the fixed point index theory. In addition, the local and global bifurcations from a semitrivial state are also investigated on the basis of bifurcation theory. The results indicate that diffusion and functional response helps to create stationary patterns.

MSC:

92D40 Ecology
35B32 Bifurcations in context of PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35J25 Boundary value problems for second-order elliptic equations

References:

[1] R. Peng and J. Shi, “Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case,” Journal of Differential Equations, vol. 247, no. 3, pp. 866-886, 2009. · Zbl 1169.35328 · doi:10.1016/j.jde.2009.03.008
[2] F. Yi, J. Wei, and J. Shi, “Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,” Journal of Differential Equations, vol. 246, no. 5, pp. 1944-1977, 2009. · Zbl 1203.35030 · doi:10.1016/j.jde.2008.10.024
[3] W. Ko and K. Ryu, “A qualitative study on general Gause-type predator-prey models with non-monotonic functional response,” Nonlinear Analysis: Real World Applications, vol. 10, no. 4, pp. 2558-2573, 2009. · Zbl 1163.35339 · doi:10.1016/j.nonrwa.2008.05.012
[4] W. Ko and K. Ryu, “Coexistence states of a predator-prey system with non-monotonic functional response,” Nonlinear Analysis: Real World Applications, vol. 8, no. 3, pp. 769-786, 2007. · Zbl 1136.35461 · doi:10.1016/j.nonrwa.2006.03.003
[5] W. Ko and K. Ryu, “A qualitative study on general Gause-type predator-prey models with constant diffusion rates,” Journal of Mathematical Analysis and Applications, vol. 344, no. 1, pp. 217-230, 2008. · Zbl 1144.35029 · doi:10.1016/j.jmaa.2008.03.006
[6] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Chichester, UK, 2003. · Zbl 1059.92051 · doi:10.1002/0470871296
[7] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, NY, USA, 1992. · Zbl 0777.35001
[8] T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, Hackensack, NJ, USA, 2005. · doi:10.1142/9789812701152
[9] E. N. Dancer, “On positive solutions of some pairs of differential equations,” Transactions of the American Mathematical Society, vol. 284, no. 2, pp. 729-743, 1984. · Zbl 0524.35056 · doi:10.2307/1999104
[10] E. N. Dancer, “On positive solutions of some pairs of differential equations. II,” Journal of Differential Equations, vol. 60, no. 2, pp. 236-258, 1985. · Zbl 0549.35024 · doi:10.1016/0022-0396(85)90115-9
[11] E. N. Dancer, “On the indices of fixed points of mappings in cones and applications,” Journal of Mathematical Analysis and Applications, vol. 91, no. 1, pp. 131-151, 1983. · Zbl 0512.47045 · doi:10.1016/0022-247X(83)90098-7
[12] E. N. Dancer, “Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one,” The Bulletin of the London Mathematical Society, vol. 34, no. 5, pp. 533-538, 2002. · Zbl 1027.58009 · doi:10.1112/S002460930200108X
[13] L. Li, “Coexistence theorems of steady states for predator-prey interacting systems,” Transactions of the American Mathematical Society, vol. 305, no. 1, pp. 143-166, 1988. · Zbl 0655.35021 · doi:10.2307/2001045
[14] P. Y. H. Pang and M. Wang, “Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion,” Proceedings of the London Mathematical Society, vol. 88, no. 1, pp. 135-157, 2004. · Zbl 1134.35373 · doi:10.1112/S0024611503014321
[15] R. Peng and M. Wang, “On multiplicity and stability of positive solutions of a diffusive prey-predator model,” Journal of Mathematical Analysis and Applications, vol. 316, no. 1, pp. 256-268, 2006. · Zbl 1148.35317 · doi:10.1016/j.jmaa.2005.04.033
[16] X. Zeng, “A ratio-dependent predator-prey model with diffusion,” Nonlinear Analysis: Real World Applications, vol. 8, no. 4, pp. 1062-1078, 2007. · Zbl 1124.35027 · doi:10.1016/j.nonrwa.2006.06.006
[17] Y.-H. Fan and W.-T. Li, “Global asymptotic stability of a ratio-dependent predator-prey system with diffusion,” Journal of Computational and Applied Mathematics, vol. 188, no. 2, pp. 205-227, 2006. · Zbl 1093.35039 · doi:10.1016/j.cam.2005.04.007
[18] Y. Du and Y. Lou, “Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation,” Proceedings of the Royal Society of Edinburgh. Section A, vol. 131, no. 2, pp. 321-349, 2001. · Zbl 0980.35028 · doi:10.1017/S0308210500000895
[19] Y. Du and Y. Lou, “Some uniqueness and exact multiplicity results for a predator-prey model,” Transactions of the American Mathematical Society, vol. 349, no. 6, pp. 2443-2475, 1997. · Zbl 0965.35041 · doi:10.1090/S0002-9947-97-01842-4
[20] Y. Du and Y. Lou, “S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,” Journal of Differential Equations, vol. 144, no. 2, pp. 390-440, 1998. · Zbl 0970.35030 · doi:10.1006/jdeq.1997.3394
[21] M. G. Crandall and P. H. Rabinowitz, “Bifurcation from simple eigenvalues,” Journal of Functional Analysis, vol. 8, pp. 321-340, 1971. · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[22] J. López-Gómez and M. Molina-Meyer, “Bounded components of positive solutions of abstract fixed point equations: mushrooms, loops and isolas,” Journal of Differential Equations, vol. 209, no. 2, pp. 416-441, 2005. · Zbl 1066.47063 · doi:10.1016/j.jde.2004.07.018
[23] S. Cano-Casanova, “Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 49, no. 3, pp. 361-430, 2002. · Zbl 1142.35509 · doi:10.1016/S0362-546X(01)00116-X
[24] S. Cano-Casanova and J. López-Gómez, “Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems,” Journal of Differential Equations, vol. 178, no. 1, pp. 123-211, 2002. · Zbl 1086.35073 · doi:10.1006/jdeq.2000.4003
[25] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, vol. 426 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2001. · Zbl 0978.47048 · doi:10.1201/9781420035506
[26] J. López-Gómez, “The steady states of a non-cooperative model of nuclear reactors,” Journal of Differential Equations, vol. 246, no. 1, pp. 358-372, 2009. · Zbl 1154.35057 · doi:10.1016/j.jde.2008.07.015
[27] P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems,” Journal of Functional Analysis, vol. 7, pp. 487-513, 1971. · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.