×

Superconducting \(K\) strings in high density QCD. (English) Zbl 1226.81170

Summary: Recently it has been argued that the ground state of high density QCD is likely be a combination of the CFL-phase along with condensation of the \(K^{0}\) field. This state spontaneously breaks a global \(U(1)_{Y}\) symmetry, therefore one would expect the formation of \(U(1)_{Y}\) global strings. We discuss the core structure of these strings and demonstrate that under some conditions the global \(U(1)_{Y}\) symmetry may not be restored inside the string, in contrast with the standard expectations. Instead, \(K^{+}\) condensation occurs inside the core of the string if a relevant parameter cos \(\theta _{K^{0}}\equiv m_{K^{0}}^{2}/\mu_{eff^{2}}\) is larger than some critical value \(\theta _{K^{0}} \geq \theta_{crit}\). If this phenomenon happens, the \(U(1)_{Y}\) strings become superconducting and may considerably influence the magnetic properties of dense quark matter, in particular in neutron stars.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
82D55 Statistical mechanics of superconductors

References:

[1] doi:10.1103/PhysRevLett.86.3955 · doi:10.1103/PhysRevLett.86.3955
[2] doi:10.1016/S0370-2693(01)00607-4 · Zbl 0977.81168 · doi:10.1016/S0370-2693(01)00607-4
[4] doi:10.1103/PhysRevD.65.085009 · doi:10.1103/PhysRevD.65.085009
[5] doi:10.1103/PhysRevLett.88.132302 · doi:10.1103/PhysRevLett.88.132302
[6] doi:10.1103/PhysRevD.65.125011 · doi:10.1103/PhysRevD.65.125011
[8] doi:10.1016/0370-1573(84)90145-5 · doi:10.1016/0370-1573(84)90145-5
[9] doi:10.1016/S0370-2693(98)00051-3 · doi:10.1016/S0370-2693(98)00051-3
[10] doi:10.1103/PhysRevLett.81.53 · doi:10.1103/PhysRevLett.81.53
[12] doi:10.1103/PhysRevLett.85.5531 · doi:10.1103/PhysRevLett.85.5531
[13] doi:10.1016/S0375-9474(01)01272-6 · doi:10.1016/S0375-9474(01)01272-6
[14] doi:10.1103/PhysRevD.65.054042 · doi:10.1103/PhysRevD.65.054042
[15] doi:10.1016/S0370-2693(01)01387-9 · doi:10.1016/S0370-2693(01)01387-9
[16] doi:10.1016/0550-3213(85)90408-0 · doi:10.1016/0550-3213(85)90408-0
[17] doi:10.1103/PhysRevD.37.263 · doi:10.1103/PhysRevD.37.263
[19] doi:10.1103/PhysRevD.58.083505 · doi:10.1103/PhysRevD.58.083505
[20] doi:10.1103/PhysRevD.65.103520 · doi:10.1103/PhysRevD.65.103520
[21] doi:10.1103/RevModPhys.59.533 · doi:10.1103/RevModPhys.59.533
[22] doi:10.1016/S0550-3213(98)00668-3 · doi:10.1016/S0550-3213(98)00668-3
[23] doi:10.1006/aphy.1999.5991 · doi:10.1006/aphy.1999.5991
[24] doi:10.1103/PhysRevD.61.074012 · doi:10.1103/PhysRevD.61.074012
[26] doi:10.1016/S0370-2693(00)00606-7 · doi:10.1016/S0370-2693(00)00606-7
[27] doi:10.1103/PhysRevD.58.027702 · doi:10.1103/PhysRevD.58.027702
[28] doi:10.1016/0550-3213(93)90046-R · doi:10.1016/0550-3213(93)90046-R
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.