×

\(\theta \) dependence of \(SU(N)\) gauge theories. (English) Zbl 1226.81124

Summary: We study the \(\theta\)-dependence of four-dimensional \(\mathrm{SU}(N)\) gauge theories, for \(N\geq3\) and in the large-\(N\) limit. We use numerical simulations of the Wilson lattice formulation of gauge theories to compute the first few terms of the expansion of the ground-state energy \(F(\theta)\) around \(\theta=0,\;F(\theta)-F(0)=A_2\theta^2(1+b_2\theta^2+\cdots)\). Our results support Witten’s conjecture: \(F(\theta)-F(0)={\mathcal A}\theta^2+O(1/N)\) for sufficiently small values of \(\theta,\;\theta<\pi\). Indeed, we verify that the topological susceptibility has a non-zero large-\(N\) limit \(\chi_\infty=2\mathcal A\) with corrections of \(O(1/N^2)\), in substantial agreement with the Witten-Veneziano formula which relates \(\chi_\infty\) to the \(\eta'\) mass. Furthermore, higher order terms in \(\theta\) are suppressed; in particular, the \(O(\theta^4)\) term \(b_2\) (related to the \(\eta'\)-\(\eta'\) elastic scattering amplitude) turns out to be quite small: \(b_2=-0.023(7)\) for \(N=3\), and its absolute value decreases with increasing \(N\), consistently with the expectation \(b_2=O(1/N^2)\).

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T25 Quantum field theory on lattices

References:

[1] doi:10.1016/0550-3213(74)90154-0 · doi:10.1016/0550-3213(74)90154-0
[2] doi:10.1016/0550-3213(79)90031-2 · doi:10.1016/0550-3213(79)90031-2
[3] doi:10.1016/S0920-5632(00)00212-7 · doi:10.1016/S0920-5632(00)00212-7
[4] doi:10.1016/S0920-5632(01)00924-0 · doi:10.1016/S0920-5632(01)00924-0
[6] doi:10.1103/PhysRevLett.81.2862 · Zbl 0947.81130 · doi:10.1103/PhysRevLett.81.2862
[7] doi:10.1016/S0550-3213(99)00244-8 · Zbl 0958.81119 · doi:10.1016/S0550-3213(99)00244-8
[8] doi:10.1016/0550-3213(79)90332-8 · doi:10.1016/0550-3213(79)90332-8
[10] doi:10.1103/PhysRevD.65.021501 · doi:10.1103/PhysRevD.65.021501
[12] doi:10.1016/0370-2693(82)90696-7 · doi:10.1016/0370-2693(82)90696-7
[13] doi:10.1016/S0550-3213(97)00205-8 · doi:10.1016/S0550-3213(97)00205-8
[14] doi:10.1103/PhysRevD.58.014505 · doi:10.1103/PhysRevD.58.014505
[15] doi:10.1016/S0370-2693(98)01058-2 · doi:10.1016/S0370-2693(98)01058-2
[16] doi:10.1016/S0550-3213(98)00588-4 · doi:10.1016/S0550-3213(98)00588-4
[17] doi:10.1016/S0370-2693(02)01757-4 · Zbl 0995.81511 · doi:10.1016/S0370-2693(02)01757-4
[19] doi:10.1016/S0370-2693(98)00423-7 · doi:10.1016/S0370-2693(98)00423-7
[20] doi:10.1016/S0550-3213(98)00680-4 · Zbl 0948.81613 · doi:10.1016/S0550-3213(98)00680-4
[21] doi:10.1016/S0370-2693(98)00315-3 · doi:10.1016/S0370-2693(98)00315-3
[22] doi:10.1016/S0550-3213(02)00093-7 · Zbl 0992.81089 · doi:10.1016/S0550-3213(02)00093-7
[23] doi:10.1016/S0370-2693(97)01368-3 · doi:10.1016/S0370-2693(97)01368-3
[24] doi:10.1016/S0370-2693(98)00355-4 · doi:10.1016/S0370-2693(98)00355-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.