×

Data-driven density estimation in the presence of additive noise with unknown distribution. (English) Zbl 1226.62034

Summary: We study the model \(Y=X+\varepsilon \). We assume that we have at our disposal independent identically distributed observations \(Y_1,\dots,Y_n\) and \(\varepsilon_{-1},\dots,\varepsilon_{- M}\). The \((X_j)_{1\leq j \leq n}\) are independent identically distributed with density \(f\), independent of the \((\varepsilon_j)_{1\leq j\leq n}\), independent identically distributed with density \(f_\varepsilon\). The aim of the paper is to estimate \(f\) without knowing \(f_\varepsilon\). We first define an estimator, for which we provide bounds for the integrated \(L^2\)-risk. We consider ordinary smooth and supersmooth noise \(\varepsilon\) with regard to ordinary smooth and supersmooth densities \(f\). Then we present an adaptive estimator of the density of \(f\). This estimator is obtained by penalization of a projection contrast and yields to model selection. Lastly, we present simulation experiments to illustrate the good performances of our estimator and study from the empirical point of view the importance of theoretical constraints.

MSC:

62G07 Density estimation
65C60 Computational problems in statistics (MSC2010)
62J05 Linear regression; mixed models

References:

[1] Birgé, Festschrift for Lucien Le Cam pp 55– (1997) · doi:10.1007/978-1-4612-1880-7_4
[2] Butucea, Deconvolution of supersmooth densities with smooth noise, Can. J. Statist. 32 pp 181– (2004) · Zbl 1056.62047 · doi:10.2307/3315941
[3] Butucea, Sharp optimality in density deconvolution with dominating bias: I, Teor. Veroyatn. Primen. 52 pp 111– (2007) · doi:10.4213/tvp7
[4] Carroll, Optimal rates of convergence for deconvolving a density, J. Am. Statist. Ass. 83 pp 1184– (1988) · Zbl 0673.62033 · doi:10.2307/2290153
[5] Cator, Deconvolution with arbitrarily smooth kernels, Statist. Probab. Lett. 54 pp 205– (2001) · Zbl 0999.62027 · doi:10.1016/S0167-7152(01)00083-9
[6] Cavalier, Wavelet deconvolution with noisy eigenvalues, IEEE Trans. Signal Process. 55 pp 2414– (2007) · Zbl 1391.94160 · doi:10.1109/TSP.2007.893754
[7] Comte, Penalized contrast estimator for adaptive density deconvolution, Can. J. Statist. 34 pp 431– (2006) · Zbl 1104.62033 · doi:10.1002/cjs.5550340305
[8] Comte, Finite sample penalization in adaptive density deconvolution, J. Statist. Computn Simuln 77 pp 977– (2007) · Zbl 1131.62027 · doi:10.1080/10629360600831711
[9] Delaigle, Bootstrap bandwidth selection in kernel density estimation from a contaminated sample, Ann. Inst. Statist. Math. 56 pp 19– (2004) · Zbl 1050.62038 · doi:10.1007/BF02530523
[10] Delaigle, On deconvolution with repeated measurements, Ann. Statist. 36 pp 665– (2008) · Zbl 1133.62026 · doi:10.1214/009053607000000884
[11] Devroye, Consistent deconvolution in density estimation, Can. J. Statist. 17 pp 235– (1989) · Zbl 0679.62029 · doi:10.2307/3314852
[12] Diggle, A Fourier approach to nonparametric deconvolution of a density estimate, J. R. Statist. Soc. B 55 pp 523– (1993) · Zbl 0783.62030
[13] Efromovich, Density estimation for the case of supersmooth measurement error, J. Am. Statist. Ass. 92 pp 526– (1997) · Zbl 0890.62027 · doi:10.2307/2965701
[14] Fan, On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist. 19 pp 1257– (1991) · Zbl 0729.62033 · doi:10.1214/aos/1176348248
[15] Fan, Wavelet deconvolution, IEEE Trans. Inform. Theor. 48 pp 734– (2002) · Zbl 1071.94511 · doi:10.1109/18.986021
[16] Hesse, Data-driven deconvolution, J. Nonparam. Statist. 10 pp 343– (1999) · Zbl 0936.62038 · doi:10.1080/10485259908832766
[17] Hoffmann, Nonlinear estimation for linear inverse problems with error in the operator, Ann. Statist. 36 pp 310– (2008) · Zbl 1134.65038 · doi:10.1214/009053607000000721
[18] Johannes, Deconvolution with unknown error distribution, Ann. Statist. 37 pp 2301– (2009) · Zbl 1173.62018 · doi:10.1214/08-AOS652
[19] Kerkyacharian, Localized spherical deconvolution, Ann. Statist. (2010) · Zbl 1216.62059
[20] Koo, Logspline deconvolution in Besov space, Scand. J. Statist. 26 pp 73– (1999) · Zbl 0924.65150 · doi:10.1111/1467-9469.00138
[21] Lacour, Rates of convergence for nonparametric deconvolution, C. R. Math. Acad. Sci. Par. 342 pp 877– (2006) · Zbl 1095.62056 · doi:10.1016/j.crma.2006.04.006
[22] Li, Nonparametric estimation of the measurement error model using multiple indicators, J. Multiv. Anal. 65 pp 139– (1998) · Zbl 1127.62323 · doi:10.1006/jmva.1998.1741
[23] Liu, A consistent nonparametric density estimator for the deconvolution problem, Can. J. Statist. 17 pp 427– (1989) · Zbl 0694.62017 · doi:10.2307/3315482
[24] Masry, Multivariate probability density deconvolution for stationary random processes, IEEE Trans. Inform. Theor. 37 pp 1105– (1991) · Zbl 0732.60045 · doi:10.1109/18.87002
[25] Meister, On the effect of misspecifying the error density in a deconvolution problem, Can. J. Statist. 32 pp 439– (2004) · Zbl 1059.62034 · doi:10.2307/3316026
[26] Neumann, On the effect of estimating the error density in nonparametric deconvolution, J. Nonparam. Statist. 7 pp 307– (1997) · Zbl 1003.62514 · doi:10.1080/10485259708832708
[27] Neumann, Deconvolution from panel data with unknown error distribution, J. Multiv. Anal. 98 pp 1955– (2007) · Zbl 1206.62063 · doi:10.1016/j.jmva.2006.09.012
[28] Odiachi, Removing the effects of additive noise in tirm measurements, J. Coll. Interface Sci. 270 pp 113– (2004) · doi:10.1016/S0021-9797(03)00548-4
[29] Pensky, Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist. 27 pp 2033– (1999) · Zbl 0962.62030
[30] Stefanski, Deconvoluting kernel density estimators, Statistics 21 pp 169– (1990) · Zbl 0697.62035 · doi:10.1080/02331889008802238
[31] Talagrand, New concentration inequalities in product spaces, Invent. Math. 126 pp 505– (1996) · Zbl 0893.60001 · doi:10.1007/s002220050108
[32] Zhang, Fourier methods for estimating mixing densities and distributions, Ann. Statist. 18 pp 806– (1990) · Zbl 0778.62037 · doi:10.1214/aos/1176347627
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.