×

\(L^p\) boundedness of Carleson type maximal operators with nonsmooth kernels. (English) Zbl 1226.42008

The paper under review deals with the question of the \(L^p\) boundedness of a class of Carleson type maximal operators with rough kernels, i.e., “standard” kernels with no a priori smoothness assumptions. Namely, let \(\Omega\) be a measurable function on \(\mathbb R^n\backslash \{0\}\), homogeneous of degree 0 with zero average on \(S^{n-1}\), viz.
\[ \Omega(tx)=\Omega(x) \quad \text{for any} \quad x \in \mathbb R^n\backslash \{0\} \quad \text{and} \;t>0, \]
\(\Omega \in L^1(S^{n-1})\) and
\[ \int_{S^{n-1}} \Omega(x') \,d\sigma (x')=0. \]
Let \(Q_\lambda(r)=\sum_{2\leq k\leq d} \lambda_k r^k\), \(\lambda=(\lambda_2,\dots, \lambda_d)\in \mathbb R^{d-1}\). Then the Carleson type maximal operator \({\mathcal T}^*\) associated to the real-valued polynomial \(Q_\lambda(r)\) is defined by
\[ {\mathcal T}^*(f)(x)=\sup_{\lambda} |T_\lambda (f)(x)|, \]
where \(T_\lambda\) is an oscillatory integral given by
\[ T_\lambda(f)(x)=\int_{\mathbb R^n} e^{iQ_\lambda(|y|)}K(y)f(x-y)\,dy, \]
with \(K(y)=\Omega(y) / |y|^n\).
The authors show that the mapping \(f\mapsto{\mathcal T}^*(f)\) is bounded in \(L^p(\mathbb R^n)\), \(1<p<\infty\), if \(\Omega \in H^1(S^{n-1})\), where \(H^1(S^{n-1})\) is the Hardy space on \(S^{n-1}\). The lengthy proof is based on an idea of linearizing maximal operators, Stein-Wainger’s \(TT^*\) method and the Calderón-Zygmund rotation method (where the rotation method was used to overcome the lack of smoothness of the kernel).
This result is, in the sense of removing the smoothness assumption on the kernel, an improvement on a result from E. M. Stein and S. Wainger [Math. Res. Lett. 8, No. 5–6, 789–800 (2001; Zbl 0998.42007)].

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

Citations:

Zbl 0998.42007
Full Text: DOI

References:

[1] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. · Zbl 0144.06402 · doi:10.1007/BF02392815
[2] L. Colzani, Hardy spaces on spheres, Ph. D. Thesis, Washington University, St. Louis, 1982. · Zbl 0505.46030
[3] W. Connett, Singular integrals near \(L^1\), Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Amer. Math. Soc. 35, Providence, R.I., 1979. 163-165. · Zbl 0431.42008
[4] Y. Ding and H. Liu, Weighted \(L^p\) boundedness of Carleson type maximal operators, to appear in Proc. Amer. Math. Soc.
[5] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), 799-839. · Zbl 0899.42002 · doi:10.1353/ajm.1997.0024
[6] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. · Zbl 0188.42601 · doi:10.1007/BF02394567
[7] L. Grafakos and A. Stefanov, Convolution Calderón-Zygmund singular integral operators with rough kernels, Analysis of Divergence: Control and Management of Divergent Processes, 119-143, Birkhauser, Boston-Basel-Berlin, 1999. · Zbl 0916.42010
[8] R. Hunt, On the convergence of Fourier series, Orthogonal Expansions and Their Continuous Analogues (Proc. Cont. Edwardsville, Ill., 1967), 235-255, Southern Illinois Univ. Press, Carbondale Ill., 1968. · Zbl 0159.35701
[9] E. Prestini and P. Sjölin, A Littlewood-Paley inequality for the Carleson operator, J. Fourier Anal. Appl. 6 (2000), 457-466. · Zbl 1049.42010 · doi:10.1007/BF02511540
[10] F. Ricci and G. Weiss, A characterization of \(H^1(\Sigma_n-1)\), Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), 289-294, Amer. Math. Soc. 35, Providence, R.I., 1979. · Zbl 0423.30028
[11] P. Sjölin, Convergence almost everywhere of certain singular integral and multiple Fourier series, Ark. Mat. 9 (1971), 65-90. · Zbl 0212.41703 · doi:10.1007/BF02383638
[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[13] E. M. Stein and S. Wainger, Oscillatory integrals related to Carleson’s theorem, Math. Res. Lett. 8 (2001), 789-800. · Zbl 0998.42007 · doi:10.4310/MRL.2001.v8.n6.a9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.