×

Fluid flows driven by light scattering. (English) Zbl 1225.76032

Summary: We report on the direct experimental observation of laser-induced flows in isotropic liquids that scatter light. We use a droplet microemulsion in the two-phase regime, which behaves like a binary mixture. Close to its critical consolute line, the microemulsion undergoes large refractive index fluctuations that scatter light. The radiation pressure of a laser beam is focused onto the soft interface between the two phases of the microemulsion and induces a cylindrical liquid jet that continuously emits droplets. We demonstrate that this dripping phenomenon takes place as a consequence of a steady flow induced by the transfer of linear momentum from the optical field to the liquid due to light scattering. We first show that the cylindrical jet guides light as a step-index liquid optical fiber whose core diameter is self-adapted to the light itself. Then, by modelling the light-induced flow as a low-Reynolds-number, parallel flow, we predict the dependence of the dripping flow rate on the thermophysical properties of the microemulsion and the laser beam power. Satisfying agreement is found between the model and experiments.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
78A60 Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI

References:

[1] Casner, J. Opt. Soc. Am. B 90 pp 11– (2003)
[2] Nyborg, Nonlinear Acoustics pp 207– (1997)
[3] Nieto-Vesperinas, Phil. Trans. R. Soc. Lond. A 362 pp 719– (2009)
[4] DOI: 10.1364/OL.13.000916 · doi:10.1364/OL.13.000916
[5] DOI: 10.1103/PhysRevA.31.1022 · doi:10.1103/PhysRevA.31.1022
[6] DOI: 10.1209/epl/i2003-10097-y · doi:10.1209/epl/i2003-10097-y
[7] DOI: 10.1103/PhysRev.3.69 · doi:10.1103/PhysRev.3.69
[8] DOI: 10.1039/b405493h · doi:10.1039/b405493h
[9] DOI: 10.1103/PhysRevLett.90.144503 · doi:10.1103/PhysRevLett.90.144503
[10] Zakharov, JETP Lett. 60 pp 322– (1994)
[11] DOI: 10.1103/PhysRevLett.87.054503 · doi:10.1103/PhysRevLett.87.054503
[12] DOI: 10.1103/PhysRevE.66.031604 · doi:10.1103/PhysRevE.66.031604
[13] DOI: 10.1103/PhysRevE.78.041405 · doi:10.1103/PhysRevE.78.041405
[14] DOI: 10.1103/PhysRevA.42.3421 · doi:10.1103/PhysRevA.42.3421
[15] DOI: 10.1017/S0022112081001626 · Zbl 0471.76016 · doi:10.1017/S0022112081001626
[16] DOI: 10.1063/1.1839640 · doi:10.1063/1.1839640
[17] DOI: 10.1103/PhysRevLett.101.014501 · doi:10.1103/PhysRevLett.101.014501
[18] DOI: 10.1103/PhysRevE.73.036315 · doi:10.1103/PhysRevE.73.036315
[19] DOI: 10.1103/PhysRevA.78.013835 · doi:10.1103/PhysRevA.78.013835
[20] Landau, Electrodynamics of Continuous Media (1984)
[21] DOI: 10.1103/PhysRevE.73.036314 · doi:10.1103/PhysRevE.73.036314
[22] DOI: 10.1103/PhysRevA.26.3589 · doi:10.1103/PhysRevA.26.3589
[23] DOI: 10.1121/1.1785831 · doi:10.1121/1.1785831
[24] Wood, Phil. Mag. 4 pp 417– (1927) · doi:10.1080/14786440908564348
[25] DOI: 10.1364/OL.7.000276 · doi:10.1364/OL.7.000276
[26] DOI: 10.1016/0370-1573(83)90106-0 · doi:10.1016/0370-1573(83)90106-0
[27] DOI: 10.1017/S0022112092001198 · Zbl 0850.76223 · doi:10.1017/S0022112092001198
[28] DOI: 10.1103/PhysRevLett.30.139 · doi:10.1103/PhysRevLett.30.139
[29] DOI: 10.1088/0031-8949/52/6/012 · doi:10.1088/0031-8949/52/6/012
[30] Weast, Handbook of Chemistry and Physics (1971)
[31] DOI: 10.1021/ac970079z · doi:10.1021/ac970079z
[32] Johns, Interfacial Instability (2002)
[33] DOI: 10.1103/PhysRevLett.103.024501 · doi:10.1103/PhysRevLett.103.024501
[34] DOI: 10.1103/PhysRevA.39.5268 · doi:10.1103/PhysRevA.39.5268
[35] Snyder, Optical Waveguide Theory (1983)
[36] DOI: 10.1209/0295-5075/7/3/006 · doi:10.1209/0295-5075/7/3/006
[37] Smith, Opt. Lett. 7 pp 147– (1982)
[38] DOI: 10.1121/1.413437 · doi:10.1121/1.413437
[39] DOI: 10.1103/PhysRevA.33.2605 · doi:10.1103/PhysRevA.33.2605
[40] Sengers, Progress in Liquid Physics pp 103– (1978)
[41] DOI: 10.1209/0295-5075/83/34002 · doi:10.1209/0295-5075/83/34002
[42] DOI: 10.1103/PhysRevLett.98.133601 · doi:10.1103/PhysRevLett.98.133601
[43] van de Hulst, Light Scattering by Small Particles (1957)
[44] DOI: 10.1038/35002540 · doi:10.1038/35002540
[45] DOI: 10.1063/1.1635984 · doi:10.1063/1.1635984
[46] DOI: 10.1103/PhysRevE.56.4773 · doi:10.1103/PhysRevE.56.4773
[47] DOI: 10.1016/0030-4018(95)00753-9 · doi:10.1016/0030-4018(95)00753-9
[48] DOI: 10.1063/1.2387864 · doi:10.1063/1.2387864
[49] DOI: 10.1103/PhysRevA.63.043602 · doi:10.1103/PhysRevA.63.043602
[50] Grigorova, Sov. Phys. Tech. Phys. 35 pp 374– (1990)
[51] DOI: 10.1017/S0022112089002405 · Zbl 0678.76035 · doi:10.1017/S0022112089002405
[52] DOI: 10.1016/0021-8502(85)90018-7 · doi:10.1016/0021-8502(85)90018-7
[53] DOI: 10.1103/PhysRevE.49.2141 · doi:10.1103/PhysRevE.49.2141
[54] DOI: 10.1126/science.160.3825.311 · doi:10.1126/science.160.3825.311
[55] DOI: 10.1051/jphyslet:01985004605018100 · doi:10.1051/jphyslet:01985004605018100
[56] DOI: 10.1103/PhysRevLett.25.143 · doi:10.1103/PhysRevLett.25.143
[57] DOI: 10.1103/RevModPhys.79.1197 · doi:10.1103/RevModPhys.79.1197
[58] DOI: 10.1088/0034-4885/71/3/036601 · doi:10.1088/0034-4885/71/3/036601
[59] Padgett, Optical Tweezers: Methods and Applications (2009)
[60] DOI: 10.1006/jcis.2000.7315 · doi:10.1006/jcis.2000.7315
[61] Ostrovskaya, Sov. Phys. Tech. Phys. 33 pp 468– (1988)
[62] DOI: 10.1103/PhysRevE.77.066706 · doi:10.1103/PhysRevE.77.066706
[63] Ostrovskaya, Sov. Phys. Tech. Phys. 33 pp 465– (1988)
[64] DOI: 10.1016/j.euromechflu.2007.09.001 · Zbl 1154.76059 · doi:10.1016/j.euromechflu.2007.09.001
[65] Ornstein, Proc. Kon. Ned. Akad. Wetensch. 17 pp 793– (1914)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.