×

Operator monotone functions, positive definite kernels and majorization. (English) Zbl 1225.47016

Let \(f(t)\) be a real-valued continuous function defined on an interval \(I\) in the reals and consider the operator-valued function \(f(X)\) defined on Hermitian operators \(X\) on a Hilbert space. It is shown that, if \(f(X)\) is an increasing function with respect to the operator order, then for \(F(t)=\int f(t)\,dt\) the function \(F(X)\) is convex. Moreover, let \(h(t)\) and \(g(t)\) be \(C^1\) functions on \(I\) with \(h'(t)\geq 0\) and \(g'(t)> 0\). The continuous kernel on \(I\times I\) satisfying \[ K_{h,g}(s, t)= (h(t)- h(s))/(g(t)- g(s)) \] for \(s\neq t\) is a generalization of the Löwner kernel. It is shown that \(K_{h,g}\) is positive definite on \(I\) if and only if \(h\) is majorized by \(g\) on \(I\), meaning that \(h(A)\leq h(B)\) whenever \(g(A)\leq g(B)\) for Hermitian operators \(A, B\) with spectra in \(I\). In this case, if also \(h(I)\subset g(I)= (0,\infty)\), then the kernel \(K_{g,hg}\) is infinitely divisible.

MSC:

47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
15A39 Linear inequalities of matrices
47B34 Kernel operators
Full Text: DOI

References:

[1] Julius Bendat and Seymour Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79 (1955), 58 – 71. · Zbl 0064.36901
[2] Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. · Zbl 0863.15001
[3] Rajendra Bhatia, Infinitely divisible matrices, Amer. Math. Monthly 113 (2006), no. 3, 221 – 235. · Zbl 1132.15019 · doi:10.2307/27641890
[4] Rajendra Bhatia and Hideki Kosaki, Mean matrices and infinite divisibility, Linear Algebra Appl. 424 (2007), no. 1, 36 – 54. · Zbl 1124.15015 · doi:10.1016/j.laa.2006.03.023
[5] Rajendra Bhatia and Takashi Sano, Loewner matrices and operator convexity, Math. Ann. 344 (2009), no. 3, 703 – 716. · Zbl 1172.15010 · doi:10.1007/s00208-008-0323-3
[6] William F. Donoghue Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 207. · Zbl 0278.30004
[7] Carl H. Fitzgerald, On analytic continuation to a schlicht function, Proc. Amer. Math. Soc. 18 (1967), 788 – 792. · Zbl 0177.10904
[8] Charles Loewner, On schlicht-monotonic functions of higher order, J. Math. Anal. Appl. 14 (1966), 320 – 325. · Zbl 0145.06405 · doi:10.1016/0022-247X(66)90033-3
[9] Frank Hansen and Gert Kjærgård Pedersen, Jensen’s inequality for operators and Löwner’s theorem, Math. Ann. 258 (1982), no. 3, 229 – 241. · Zbl 0473.47011 · doi:10.1007/BF01450679
[10] Roger A. Horn, The theory of infinitely divisible matrices and kernels, Trans. Amer. Math. Soc. 136 (1969), 269 – 286. · Zbl 0177.05003
[11] Roger A. Horn, On boundary values of a schlicht mapping, Proc. Amer. Math. Soc. 18 (1967), 782 – 787. · Zbl 0177.11001
[12] Roger A. Horn, Schlicht mappings and infinitely divisible kernels, Pacific J. Math. 38 (1971), 423 – 430. · Zbl 0203.07802
[13] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. · Zbl 0576.15001
[14] Fritz Kraus, Über konvexe Matrixfunktionen, Math. Z. 41 (1936), no. 1, 18 – 42 (German). · Zbl 0013.39701 · doi:10.1007/BF01180403
[15] Mitsuru Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4111 – 4123. · Zbl 1035.47008
[16] Mitsuru Uchiyama, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Anal. 231 (2006), no. 1, 221 – 244. · Zbl 1102.47010 · doi:10.1016/j.jfa.2005.03.005
[17] Mitsuru Uchiyama, A new majorization between functions, polynomials, and operator inequalities. II, J. Math. Soc. Japan 60 (2008), no. 1, 291 – 310. · Zbl 1153.47013
[18] M. Uchiyama, A new majorization induced by matrix order, Operator Theory: Advances and Applications, 187(2008)211-216. · Zbl 1156.47023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.