×

Characterization and duality of projective and direct limits of measures and applications. (English) Zbl 1225.28003

Summary: A representation of the projective system of abstract \(\sigma \)-finite measures on a topological family is given and with it a general characterization of their projective limits is obtained. Strong and weak direct limits of direct systems of measures as well as the duality between them are characterized with detailed analysis. This is used to prove several results of both theoretical and applicational importance. These include obtaining the equivalence of regular martingales and some projective systems admitting limits, measure representations of general semi-martingales, an extension theorem of product conditional measures, and a generalization of Rokhlin’s theorem on completely positive entropy sequences of Lebesgue systems to general probability spaces. Further characterizations of projective and direct limits receive an extended treatment, indicating a great potential for future works.

MSC:

28A35 Measures and integrals in product spaces
46G10 Vector-valued measures and integration
60G05 Foundations of stochastic processes
Full Text: DOI

References:

[1] Bochner S., Harmonic Analysis and the Theory of Probability (1955) · Zbl 0068.11702
[2] Choksi J. R., Proc. London Math. Soc. (3) 8 pp 321–
[3] Chow Y. S., Trans. Amer. Math. Soc. 97 pp 254–
[4] Dinculeanu N., Illinois J. Math. 12 pp 340–
[5] DOI: 10.1007/BF00531754 · Zbl 0164.47201 · doi:10.1007/BF00531754
[6] Dunford N., Linear Operators, Part I: General Theory (1958) · Zbl 0088.32102
[7] DOI: 10.1214/aop/1176996887 · Zbl 0265.60044 · doi:10.1214/aop/1176996887
[8] DOI: 10.1090/S0002-9947-1962-0147606-6 · doi:10.1090/S0002-9947-1962-0147606-6
[9] DOI: 10.1090/S0002-9939-1951-0045084-7 · doi:10.1090/S0002-9939-1951-0045084-7
[10] DOI: 10.1215/S0012-7094-53-02024-9 · Zbl 0051.29202 · doi:10.1215/S0012-7094-53-02024-9
[11] DOI: 10.1007/978-3-642-88507-5 · doi:10.1007/978-3-642-88507-5
[12] Tulcea C. T. Ionescu, Atti Acad. Naz. Lincei Rend. C1. Sci. Fis. Mat. Nat. (8) 7 pp 208–
[13] Kolmogorov A. N., Foundations of the Theory of Probability (1956) · Zbl 0074.12202
[14] DOI: 10.1007/BF02412184 · Zbl 0137.35401 · doi:10.1007/BF02412184
[15] DOI: 10.1137/1101016 · doi:10.1137/1101016
[16] DOI: 10.1016/0047-259X(75)90052-4 · Zbl 0327.60005 · doi:10.1016/0047-259X(75)90052-4
[17] DOI: 10.1007/978-1-4757-6598-4 · doi:10.1007/978-1-4757-6598-4
[18] Rao M. M., Measure Theory and Integration (2004) · Zbl 1108.28001
[19] DOI: 10.1201/9781420027433 · doi:10.1201/9781420027433
[20] DOI: 10.1142/9789814350822 · doi:10.1142/9789814350822
[21] DOI: 10.1137/1138027 · doi:10.1137/1138027
[22] DOI: 10.1070/RM1967v022n05ABEH001224 · Zbl 0174.45501 · doi:10.1070/RM1967v022n05ABEH001224
[23] Schreiber B. M., Trans. Amer. Math. Soc. 158 pp 148–
[24] Schwartz L., Tata Institute, Bombay, in: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (1973)
[25] DOI: 10.1090/S0002-9947-1966-0239050-1 · doi:10.1090/S0002-9947-1966-0239050-1
[26] DOI: 10.1090/S0002-9947-1933-1501718-2 · doi:10.1090/S0002-9947-1933-1501718-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.