×

Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling \(\nu (p, \cdot ) \to + \infty \) as \(p \to +\infty \). (English) Zbl 1224.35311

Summary: Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem.

MSC:

35Q30 Navier-Stokes equations
76A05 Non-Newtonian fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] C. Andrade: Viscosity of liquids. Nature 125 (1930), 309–310. · JFM 56.1264.10 · doi:10.1038/125309b0
[2] S. Bair: A more complete description of the shear rheology of high-temperature, high-shear journal bearing lubrication. Tribology transactions 49 (2006), 39–45. · doi:10.1080/05698190500414391
[3] S. Bair and P. Kottke: Pressure-viscosity relationships for elastohydrodynamics. Tribology transactions 46 (2003), 289–295. · doi:10.1080/10402000308982628
[4] C. Barus: Isothermals, isopiestics and isometrics relative to viscosity. American Jour. Sci. 45 (1893), 87–96,.
[5] P. W. Bridgman: The Physics of High Pressure. MacMillan, New York, 1931. · JFM 57.0068.01
[6] M. Bulíček, J. Málek, and K.R. Rajagopal: Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56 (2007), 51–86. · Zbl 1129.35055 · doi:10.1512/iumj.2007.56.2997
[7] M. Bulíček, J. Málek, and K. R. Rajagopal: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries. To appear in SIAM J. Math. Anal.. · Zbl 1195.35239
[8] M. Franta, J. Málek, and K. R. Rajagopal: On steady flows of fluids with pressure-and shear-dependent viscosities. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2055) (2005), 651–670. · Zbl 1145.76311 · doi:10.1098/rspa.2004.1360
[9] J. Hron, J. Málek, J. Nečas, and K. R. Rajagopal: Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure-and shear-dependent viscosities. Math. Comput. Simulation 61(3–6) (2003), 297–315. · Zbl 1205.76159 · doi:10.1016/S0378-4754(02)00085-X
[10] J. Leray: Sur le mouvement d’un liquide visquex emplissant l’espace. Acta Math. 63 (1934), 193–248. · JFM 60.0726.05 · doi:10.1007/BF02547354
[11] J. Málek, J. Nečas, and K. R. Rajagopal: Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal. 165(3) (2002), 243–269. · Zbl 1022.76011 · doi:10.1007/s00205-002-0219-4
[12] J. Málek, J. Nečas, M. Rokyta, and M. Ružička.: Weak and Measure-valued Solutions to Evolutionary PDEs. Chapman & Hall, London, 1996.
[13] J. Málek and K. R. Rajagopal: Mathematical Properties of the Solutions to the Equations Govering the Flow of Fluid with Pressure and Shear Rate Dependent Viscosities. In Handbook of Mathematical Fluid Dynamics, Vol. IV, Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, 2007, pp. 407–444.
[14] K. R. Rajagopal: On implicit constitutive theories. Appl. Math. 48(4) (2003), 279–319. · Zbl 1099.74009 · doi:10.1023/A:1026062615145
[15] K. R. Rajagopal: On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006), 243–249. · Zbl 1097.76009 · doi:10.1017/S0022112005008025
[16] K. R. Rajagopal and A. R. Srinivasa: On the nature of constraints for continua undergoing dissipative processes. Proc. R. Soc. A 461 (2005), 2785–2795. · Zbl 1186.74008 · doi:10.1098/rspa.2004.1385
[17] D. G. Schaeffer: Instability in the evolution equations describing incompressible granular flow. J. Differential Equations 66(1) (1987), 19–50. · Zbl 0647.35037 · doi:10.1016/0022-0396(87)90038-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.