×

On the number of limit cycles of a generalized Abel equation. (English) Zbl 1224.34097

Summary: New results are proved on the maximum number of isolated \(T\)-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations

References:

[1] A. Álvarez, J. -L. Bravo, M. Fernández: The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Commun. Pure Appl. Anal. 8 (2009), 1493–1501. · Zbl 1273.34045 · doi:10.3934/cpaa.2009.8.1493
[2] M. J. Álvarez, A. Gasull, H. Giacomini: A new uniqueness criterion for the number of periodic orbits of Abel equations. J. Differ. Equations 234 (2007), 161–176. · Zbl 1118.34036 · doi:10.1016/j.jde.2006.11.004
[3] M. J. Álvarez, A. Gasull, R. Prohens: On the number of limit cycles of some systems on the cylinder. Bull. Sci. Math. 131 (2007), 620–637. · Zbl 1248.34029 · doi:10.1016/j.bulsci.2006.04.005
[4] M. A. M. Alwash: Periodic solutions of polynomial non-autonomous differential equations. Electron. J. Differ. Equ. 2005 (2005), 1–8.
[5] M. A. M. Alwash: Periodic solutions of Abel differential equations. J. Math. Anal. Appl. 329 (2007), 1161–1169. · Zbl 1154.34397 · doi:10.1016/j.jmaa.2006.07.039
[6] L A. Cherkas: Number of limit cycles of an autonomous second-order system. Differ. Equations 12 (1976), 666–668. · Zbl 0365.34039
[7] A. Gasull, A. Guillamon: Limit cycles for generalized Abel equations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 (2006), 3737–3745. · Zbl 1140.34348 · doi:10.1142/S0218127406017130
[8] A. Gasull, J. Llibre: Limit cycles for a class of Abel equations. SIAM J. Math. Anal. 21 (1990), 1235–1244. · Zbl 0732.34025 · doi:10.1137/0521068
[9] A. Gasull, J. Torregrosa: Exact number of limit cycles for a family of rigid systems. Proc. Am. Math. Soc. 133 (2005), 751–758. · Zbl 1062.34030 · doi:10.1090/S0002-9939-04-07542-2
[10] P. Korman, T. Ouyang: Exact multiplicity results for two classes of periodic equations. J. Math. Anal. Appl. 194 (1995), 763–379. · Zbl 0844.34036 · doi:10.1006/jmaa.1995.1328
[11] A. Lins-Neto: On the number of solutions of the equation {\(\Sigma\)} j=0 n a j(t)x j, 0 t 1, for which x(0) = x(1). Invent. Math. 59 (1980), 69–76. · Zbl 0448.34012
[12] M. N. Nkashama: A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations. J. Math. Anal. Appl. 140 (1989), 381–395. · Zbl 0674.34009 · doi:10.1016/0022-247X(89)90072-3
[13] V. A. Pliss: Nonlocal Problems of the Theory of Oscillations. Academic Press, New York, 1966.
[14] A. Sandqvist, K. M. Andersen: On the number of closed solutions to an equation $$\(\backslash\)dot x = f(t,x)$$ , where $${f_{{x\^n}}}(t,x) \(\backslash\)ge 0$$ (n = 1, 2, or 3). J. Math. Anal. Appl. 159 (1991), 127–146. · Zbl 0732.34039 · doi:10.1016/0022-247X(91)90225-O
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.