×

Convergence of directional methods under mild differentiability and applications. (English) Zbl 1223.65035

This paper deals with the convergence analysis of the directional Newton method (DNM) for approximating a zero of a differentiable function defined on a convex set. A semilocal convergence analysis for DNM is provided. Some sufficient conditions on convergence as well as the corresponding error bounds are provided. Several previous results are extended or improved.

MSC:

65H10 Numerical computation of solutions to systems of equations
Full Text: DOI

References:

[1] Argyros, I. K., The Newton-Kantorovich method under mild differentiability conditions and the Ptaˇk error estimates, Monatsh. Math., 101, 175-193 (1990) · Zbl 0712.65053
[2] Argyros, I. K., A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298, 374-397 (2004) · Zbl 1057.65029
[3] Argyros, I. K., Computational theory of iterative methods, (Chui, C. K.; Wuytack, L., Series: Studies in Computational Mathematics, vol. 15 (2007), Elsevier Publ. Co.: Elsevier Publ. Co. New York, U.S.A) · Zbl 0976.65054
[4] Argyros, I. K., A semilocal convergence analysis for directional Newton methods, Math. Comput. A.M.S, 80, 327-343 (2011) · Zbl 1211.65057
[5] Argyros, I. K.; Hilout, S., Extending the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 234, 2993-3006 (2010) · Zbl 1195.65075
[6] A. Ben-Israel, Y. Levin, Maple programs for directional Newton methods. <ftp://rutcor.rutgers.edu/pub/bisrael/Newton-Dir.mws>; A. Ben-Israel, Y. Levin, Maple programs for directional Newton methods. <ftp://rutcor.rutgers.edu/pub/bisrael/Newton-Dir.mws> · Zbl 0985.65049
[7] Cianciaruso, F., A further journey in the “terra incognita” of the Newton-Kantorovich method, Nonlinear Funct. Anal. Appl., 15, 2, 173-183 (2010) · Zbl 1242.65113
[8] De Pascale, E.; Zabrejko, P. P., New convergence criteria for Newton-Kantorovich method and some applications to nonlinear integral equations, Rend. Sem. Mat. Univ. Padova, 100, 211-230 (1998) · Zbl 0923.65029
[9] Ezquerro, J. A.; Hernández, M. A.; Salanova, M. A., A discretization scheme for some conservative problems, J. Comput. Appl. Math., 115, 1-2, 181-192 (2000) · Zbl 0948.65058
[10] Krishnan, S.; Manocha, D., An efficient surface intersection algorithm based on lower-dimensional formulation, ACM Trans. Graphics, 16, 1, 74-106 (1997)
[11] Levin, Y.; Ben-Israel, A., Directional Newton methods in \(n\) variables, Math. Comput. A.M.S., 71, 237, 251-262 (2002) · Zbl 0985.65049
[12] Lukács, G., The generalized inverse matrix and the surface-surface intersection problem, (Theory and Practice of Geometric Modeling (Blaubeuren, 1988) (1989), Springer: Springer Berlin), 167-185 · Zbl 0692.68076
[13] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (1970), Academic Press: Academic Press New York · Zbl 0241.65046
[14] Patrikalakis, N. M., Surface-to-surface intersections, IEEE Comput. Graphics Appl., 13, 1, 89-95 (1993)
[15] Pereyra, V., Iterative methods for solving nonlinear least square problems, SIAM J. Numer. Anal., 4, 27-36 (1967) · Zbl 0149.36702
[16] Polyak, B. T., Introduction to optimization, Translations Series in Mathematics and Engineering (1987), Optimization Software, Inc., Publications Division: Optimization Software, Inc., Publications Division New York, (Translated from the Russian. With a foreword by D.P. Bertsekas) · Zbl 0652.49002
[17] Proinov, P. D., General local convergence theory for a class of iterative processes and its applications to Newton’s method, J. Complex., 25, 38-62 (2009) · Zbl 1158.65040
[18] Proinov, P. D., New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complex., 26, 3-42 (2010) · Zbl 1185.65095
[19] Ralston, A.; Rabinowitz, P., A first course in numerical analysis (1978), Mc Graw-Hill · Zbl 0408.65001
[20] Rockne, J., Newton’s method under mild differentiability conditions with error analysis, Numer. Math., 18, 291-305 (1972)
[21] Stoer, J.; Bulirsch, K., Introduction to Numerical Analysis (1976), Springer-Verlag
[22] Walker, H. F.; Watson, L. T., Least-change Secant update methods, SIAM J. Numer. Anal., 27, 1227-1262 (1990) · Zbl 0733.65032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.