×

Master-slave synchronization of continuously and intermittently coupled sampled-data chaotic oscillators. (English) Zbl 1222.93148

Summary: We consider the problem of synchronizing a master-slave chaotic system in the sampled-data setting. We consider both the intermittent coupling and continuous coupling cases. We use an Euler approximation technique to discretize a continuous-time chaotic oscillator containing a continuous nonlinear function. Next, we formulate the problem of global asymptotic synchronization of the sampled-data master–slave chaotic system as equivalent to the states of a corresponding error system asymptotically converging to zero for arbitrary initial conditions. We begin by developing a pulse-based intermittent control strategy for chaos synchronization. Using the discrete-time Lyapunov stability theory and the linear matrix inequality (LMI) framework, we construct a state feedback periodic pulse control law which yields global asymptotic synchronization of the sampled-data master–slave chaotic system for arbitrary initial conditions. We obtain a continuously coupled sampled-data feedback control law as a special case of the pulse-based feedback control. Finally, we provide experimental validation of our results by implementing, on a set of microcontrollers endowed with RF communication capability, a sampled-data master–slave chaotic system based on Chua’s circuit.

MSC:

93C57 Sampled-data control/observation systems
34D06 Synchronization of solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N35 Dynamical systems in control
93D15 Stabilization of systems by feedback
Full Text: DOI

References:

[1] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S., The synchronization of chaotic systems, Phys Rep, 366, 1-101 (2002) · Zbl 0995.37022
[2] (Chen, G.; Yu, X., Chaos control theory and applications. Chaos control theory and applications, Lecture notes in control and information sciences, vol. 292 (2003), Springer: Springer Berlin) · Zbl 1029.00015
[3] Gonzalez-Miranda, J. M., Synchronization and control of chaos (2004), Imperial College Press: Imperial College Press London
[4] Camazine, S.; Ristine, W.; Didion, M. E., Self-organization in biological systems (2003), Princeton University Press · Zbl 1130.92009
[5] Buck, J.; Buck, E., Synchronous Fireflies, Sci Am, 234, 74 (1976)
[6] Collins, J. J.; Stewart, I., Coupled nonlinear oscillators and the symmetries of animal gaits, Science, 3, 349-392 (1993) · Zbl 0808.92012
[7] Honerkamp, J., The heart as a system of coupled nonlinear oscillators, J Math Biol, 19, 69-88 (1983)
[8] Netoff, T. I.; Schiff, S. J., Decreased neuronal synchronization during experimental seizures, J Neurosci, 22, 7297-7307 (2002)
[9] Cuomo, K. M.; Oppenheim, V. A.; Strogatz, S. H., Synchronization of Lorentz-based chaotic circuits with application to communications, IEEE Trans Circuits Syst II, 40, 626-633 (1993)
[10] Feki, M., An adaptive chaos synchronization scheme applied to secure communication, Chaos Soliton Fract, 18, 141-148 (2003) · Zbl 1048.93508
[11] Feki, M.; Robert, B.; Gelle, G.; Colas, M., Secure digital communication using discrete-time chaos synchronization, Chaos Soliton Fract, 18, 881-890 (2003) · Zbl 1069.94016
[12] Hayes, S.; Grebogi, C.; Ott, E., Communicating with chaos, Phys Rev Lett, 70, 3031-3034 (1993)
[13] Jovic, B.; Unsworth, C. P.; Sandhu, G. S.; Berber, S. M., A robust sequence synchronization unit for multi-user DS-CDMA chaos-based communication systems, Signal Process, 87, 1692-1708 (2007) · Zbl 1186.94166
[14] Miliou, A. N.; Antoniades, I. P.; Stavrinides, S. G.; Anagnostopulos, A. N., Secure communication by chaotic synchronization: robustness under noisy conditions, Nonlinear Anal: Real World Appl, 8, 1003-1012 (2007) · Zbl 1187.94007
[15] Yang, T.; Wu, C. W.; Chua, L., Cryptography based on chaotic systems, IEEE Trans Circuits Syst I: Fundam Theory Appl, 44, 469-472 (1997) · Zbl 0884.94021
[16] Ge, Z.; Chen, Y., Synchronization of mutual coupled chaotic systems via partial stability theory, Chaos Soliton Fract, 34, 787-794 (2007) · Zbl 1134.37329
[17] Tsay, S.; Huang, C.; Qiu, D.; Chen, W., Implementation of bidirectional chaotic communication systems based on Lorenz circuits, Chaos Soliton Fract, 20, 567-579 (2004) · Zbl 1050.93035
[18] Yu, Y.; Zhang, S., The synchronization of linearly bidirectional coupled chaotic systems, Chaos Soliton Fract, 22, 189-197 (2004) · Zbl 1060.93538
[19] Carroll, T. L.; Pecora, L. M., Synchronizing chaotic circuits, IEEE Trans Circuits Syst, 38, 453-456 (1991)
[20] Jiang, G. P.; Tang, W. K.S.; Chen, G., A simple global synchronization criterion for coupled chaotic system, Chaos Soliton Fract, 15, 925-935 (2003) · Zbl 1065.70015
[21] Lerescu, A. I.; Contandache, N.; Oancea, S.; Grosu, I., Collection of master-slave synchronized chaotic systems, Chaos Soliton Fract, 22, 599-604 (2004) · Zbl 1096.93016
[22] Park, J. H., Chaos synchronization of a chaotic system via nonlinear control, Chaos Soliton Fract, 25, 579-584 (2005) · Zbl 1092.37514
[23] Sun, J.; Zhang, Y., Some simple global synchronization criterions for coupled time-varying chaotic systems, Chaos Soliton Fract, 19, 93-98 (2004) · Zbl 1069.34068
[24] Haeri, M.; Khademian, B., Comparisons between different synchronization methods of identical chaotic systems, Chaos Soliton Fract, 29, 1002-1022 (2006) · Zbl 1142.37326
[25] Chen, H.-H., Global synchronization of chaotic systems via linear balanced feedback control, Appl Math Comput, 186, 923-931 (2007) · Zbl 1113.93047
[26] Fortuna, L.; Frasca, M.; Rizzo, A., Experimental pulse synchronization of two chaotic circuits, Chaos Soliton Fract, 17, 335-361 (2003) · Zbl 1036.94539
[27] Grassi, G.; Mascolo, S., Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE Trans Circuits Syst-I: Fundam Theory Appl, 44, 1011-1014 (1997)
[28] Kilic, R., Experimental Study on impulsive synchronization between two modified Chua’s circuits, Nonlinear Anal: Real World Appl, 7, 1298-1303 (2006) · Zbl 1130.37359
[29] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic system, Phys Rev Lett, 64, 821-824 (1990) · Zbl 0938.37019
[30] Kocarev, U.; Parlitz, L., General approach for chaotic synchronization with applications to communication, Phys Rev Lett, 74, 5028-5031 (1995)
[31] Andrievsky, B., Adaptive synchronization methods for signal transmission on chaotic carrier, Math Comput Simulat, 58, 285-293 (2002) · Zbl 0995.65133
[32] Liao, T.-L.; Huang, N.-S., Dead-beat chaos synchronization and its applications to image communications, IEICE Trans Fundam, E82-A, 1669-1673 (1999)
[33] Parlitz, U.; Ergezinger, S., Robust communication based on chaotic spreading sequences, Phys Lett A, 188, 146-150 (1994)
[34] Albuquerque, H. A.; Rubinger, R. M.; Rech, P. C., Theoretical and experimental time series analysis of an inductorless Chua’s circuit, Physica D, 233, 66-72 (2007) · Zbl 1126.37051
[35] Posadas-Castillo, C.; Cruz-Hernandez, C.; Lopez-Gutierrez, R., Experimental realization of synchronization in complex networks with Chua’s circuits like nodes, Chaos Soliton Fract, 40, 1963-2197 (2009)
[36] Torres, L.; Aguirre, L., Inductorless Chua’s circuit, Electron Lett, 36, 1915-1916 (2000)
[37] Torres, L.; Aguirre, L., Transmitting information by controlling nonlinear oscillators, Physica D, 196, 387-406 (2004) · Zbl 1069.34057
[38] Hatano, Y.; Mesbahi, M., Agreement over random networks, IEEE Trans Automat Contr, 50, 1867-1872 (2005) · Zbl 1365.94482
[39] Porfiri, M.; Stilwell, D. J., Consensus seeking over random weighted directed graphs, IEEE Trans Automat Contr, 52, 1767-1773 (2007) · Zbl 1366.93330
[40] Amritkar, R.; Hu, C., Synchronized state of coupled dynamics on time-varying networks, Chaos, 16, 015117 (2006) · Zbl 1144.37313
[41] Belykh, I. V.; Belykh, V. N.; Hasler, M., Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, 195, 188-206 (2004) · Zbl 1098.82621
[42] Chen, L.; Qiu, C.; Huang, H. B., Synchronization with on-off coupling: role of time scales in network dynamics, Phys Rev E (Stat Nonlinear Soft Matter Phys), 79, 045101 (2009)
[43] Porfiri, M.; Fiorilli, F., Global pulse synchronization of chaotic oscillators through fast-switching: theory and experiments, Chaos Soliton Fract, 41, 245-262 (2009) · Zbl 1198.93183
[44] Porfiri, M.; Fiorilli, F., Node-to-node pinning control of complex networks, Chaos, 19, 013122 (2009) · Zbl 1311.93011
[45] Porfiri, M.; Pigliacampo, R., Master-slave global stochastic synchronization of chaotic oscillators, SIAM J Appl Dyn Syst, 7, 825-842 (2008) · Zbl 1167.34329
[46] Porfiri, M.; Stilwell, D. J.; Bollt, E. M., Synchronization in random weighted directed networks, IEEE Trans Circuits Syst I, 55, 3170-3177 (2008)
[47] Porfiri, M.; Stilwell, D. J.; Bollt, E. M.; Skufca, J. D., Random talk: random walk and synchronizability in a moving neighborhood network, Physica D, 224, 102-113 (2006) · Zbl 1115.60069
[48] Stilwell, D. J.; Bollt, E. M.; Roberson, D. G., Sufficient conditions for fast switching synchronization in time varying network topologies, SIAM J Appl Dyn Syst, 5, 140-156 (2006) · Zbl 1145.37345
[49] Arcak, M.; Nesic, D., A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation, Automatica, 40, 1931-1938 (2004) · Zbl 1059.93081
[50] Boyd S, El-Ghaoui L, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Philadelphia, PA; 1994.; Boyd S, El-Ghaoui L, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Philadelphia, PA; 1994. · Zbl 0816.93004
[51] Peitgen, H.; Jurgens, H.; Saupe, D., Chaos and fractals (1992), Springer-Verlag: Springer-Verlag New York, NY · Zbl 0779.58004
[52] Lee, S.-H.; Li, Y.-F.; Kapila, V., Development of a Matlab-based graphical user interface for pic microcontroller projects, Comput Educ J, XV, 41-56 (2005)
[53] Panda, A.; Wong, H.; Kapila, V.; Lee, S.-H., Two-tank liquid level control using a basic stamp microcontroller and a Matlab-based data acquisition and control toolbox, Comput Educ J, XVII, 32-46 (2007)
[54] Website of Parallax, Inc. http://www.parallax.com/detail.asp?product_id=32100; Website of Parallax, Inc. http://www.parallax.com/detail.asp?product_id=32100
[55] Website of Parallax, Inc. http://www.parallax.com/detail.asp?product_id=27985; Website of Parallax, Inc. http://www.parallax.com/detail.asp?product_id=27985
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.