×

Whole-plot exchange algorithms for constructing D-optimal multistratum designs. (English) Zbl 1222.62098

Summary: Multistratum experiments contain several different sizes of experimental units. Examples include split-plot, strip-plot designs, and randomized block designs. We propose a strategy for constructing a D-optimal multistratum design by improving a randomly generated design through a sequence of whole-plot exchanges. This approach preserves the design structure and simplifies updates to the information and is applicable to any multistratum design where the largest-sized experimental unit is either a whole plot or a block. Two whole-plot exchange algorithms inspired by the point-exchange strategies of V. V. Fedorov [Theory of optimal experiments. NY-London: Academic Press (1972; Zbl 0261.62002)] and H. P. Wynn [J. R. Stat. Soc., Ser. B 34, 133–147 (1972; Zbl 0248.62033)] are described. The application of the algorithms to several design problems is discussed.

MSC:

62K05 Optimal statistical designs
62K10 Statistical block designs
62K20 Response surface designs
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.2307/2683342 · doi:10.2307/2683342
[2] Atkinson A. C., Biometrika 76 pp 515– (1989) · Zbl 0677.62066 · doi:10.1093/biomet/76.3.515
[3] Atkinson A. C., Optimum Experimental Designs (1992) · Zbl 0829.62070
[4] DOI: 10.2307/3556143 · Zbl 0705.62072 · doi:10.2307/3556143
[5] DOI: 10.1111/1467-9876.00068 · doi:10.1111/1467-9876.00068
[6] DOI: 10.1080/10543409808835237 · Zbl 0914.62095 · doi:10.1080/10543409808835237
[7] Fedorov V. V., Theory of Optimal Experiments (1972)
[8] Goos P., The Optimal Design of Blocked and Split-Plot Experiments (2002) · Zbl 1008.62068
[9] DOI: 10.1016/S0167-9473(01)00010-X · Zbl 1079.62532 · doi:10.1016/S0167-9473(01)00010-X
[10] Goos P., Journal of Quality Technology 33 pp 436– (2001)
[11] DOI: 10.1198/004017003000000050 · doi:10.1198/004017003000000050
[12] Goos P., Journal of Quality Technology 36 pp 12– (2004)
[13] Graybill F. A., Theory and Application of the Linear Model (1976) · Zbl 0371.62093
[14] Harville D. A., Matrix Algebra from a Statistician’s Perspective (1997) · Zbl 0881.15001
[15] DOI: 10.1111/j.1467-9876.2007.00581.x · doi:10.1111/j.1467-9876.2007.00581.x
[16] DOI: 10.1093/biomet/asn070 · Zbl 1162.62396 · doi:10.1093/biomet/asn070
[17] Letsinger J. D., Journal of Quality Technology 28 pp 381– (1996)
[18] DOI: 10.2307/1270903 · Zbl 0889.62069 · doi:10.2307/1270903
[19] Milliken G. A., Analysis of Messy Data, Vol. 1: Designed Experiments (1992) · Zbl 0799.62001
[20] DOI: 10.1198/00401700152404291 · Zbl 1072.62623 · doi:10.1198/00401700152404291
[21] Vahl C. I., Algorithms for Construction D-optimal Designs for Multilevel Experiments (2005)
[22] Wynn H. P., Journal of the Royal Statistical Society Series B Statistics Methodology 34 pp 133– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.