×

On the power structure over the Grothendieck ring of varieties and its applications. (English. Russian original) Zbl 1222.14007

Proc. Steklov Inst. Math. 258, 53-64 (2007); translation from Tr. Mat. Inst. Steklova 258, 58-69 (2007).
Summary: We discuss the notion of a power structure over a ring and the geometric description of the power structure over the Grothendieck ring of complex quasi-projective varieties and show some examples of applications to generating series of classes of configuration spaces (for example, nested Hilbert schemes of J. Cheah [Math. Z. 227, No. 3, 479–504 (1998; Zbl 0890.14003); J. Algebr. Geom. 5, No. 3, 479–511 (1996; Zbl 0889.14001)]) and wreath product orbifolds.

MSC:

14C05 Parametrization (Chow and Hilbert schemes)
16E20 Grothendieck groups, \(K\)-theory, etc.
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry

References:

[1] V. V. Batyrev, ”Non-Archimedean Integrals and Stringy Euler Numbers of Log-Terminal Pairs,” J. Eur. Math. Soc. 1, 5–33 (1999). · Zbl 0943.14004 · doi:10.1007/PL00011158
[2] J. Burillo, ”The Poincaré-Hodge Polynomial of a Symmetric Product of Compact Kähler Manifolds,” Collect. Math. 41, 59–69 (1990). · Zbl 0762.14007
[3] J. Cheah, ”On the Cohomology of Hilbert Schemes of Points,” J. Algebr. Geom. 5, 479–511 (1996). · Zbl 0889.14001
[4] J. Cheah, ”The Virtual Hodge Polynomials of Nested Hilbert Schemes and Related Varieties,” Math. Z. 227, 479–504 (1998). · Zbl 0890.14003 · doi:10.1007/PL00004387
[5] J. Cheah, ”Cellular Decompositions for Nested Hilbert Schemes of Points,” Pac. J. Math. 183, 39–90 (1998). · Zbl 0904.14001 · doi:10.2140/pjm.1998.183.39
[6] L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, ”Strings on Orbifolds. I,” Nucl. Phys. B 261, 678–686 (1985). · doi:10.1016/0550-3213(85)90593-0
[7] L. Göttsche, ”On the Motive of the Hilbert Scheme of Points on a Surface,” Math. Res. Lett. 8, 613–627 (2001). · Zbl 1079.14500 · doi:10.4310/MRL.2001.v8.n5.a3
[8] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, ”A Power Structure over the Grothendieck Ring of Varieties,” Math. Res. Lett. 11, 49–57 (2004). · Zbl 1063.14026 · doi:10.4310/MRL.2004.v11.n1.a6
[9] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, ”Power Structure over the Grothendieck Ring of Varieties and Generating Series of Hilbert Schemes of Points,” Mich. Math. J. 54(2), 353–359 (2006); math.AG/0407204. · Zbl 1122.14003 · doi:10.1307/mmj/1156345599
[10] S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, ”Integration over Spaces of Nonparametrized Arcs and Motivie Versions of the Monodromy Zeta Function,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 252, 71–82 (2006) [Proc. Steklov Inst. Math. 252, 63–73 (2006)]. · Zbl 1350.14023
[11] M. Kapranov, ”The Elliptic Curve in the S-Duality Theory and Eisenstein Series for Kac-Moody Groups,” math.AG/0001005.
[12] W.-P. Li and Zh. Qin, ”On the Euler Numbers of Certain Moduli Spaces of Curves and Points,” math.AG/0508132.
[13] I. G. Macdonald, ”The Poincaré Polynomial of a Symmetric Product,” Proc. Cambridge Philos. Soc. 58, 563–568 (1962). · Zbl 0121.39601 · doi:10.1017/S0305004100040573
[14] H. Tamanoi, ”Generalized Orbifold Euler Characteristic of Symmetric Products and Equivariant Morava K-Theory,” Algebr. Geom. Topology 1, 115–141 (2001). · Zbl 0965.57033 · doi:10.2140/agt.2001.1.115
[15] W. Wang, ”Equivariant K-Theory, Wreath Products, and Heisenberg Algebra,” Duke Math. J. 103, 1–23 (2000). · Zbl 0947.19004 · doi:10.1215/S0012-7094-00-10311-0
[16] W. Wang and J. Zhou, ”Orbifold Hodge Numbers of Wreath Product Orbifolds,” J. Geom. Phys. 38, 152–169 (2001). · Zbl 1063.32007 · doi:10.1016/S0393-0440(00)00060-7
[17] E. Zaslow, ”Topological Orbifold Models and Quantum Cohomology Rings,” Commun. Math. Phys. 156, 301–331 (1993). · Zbl 0795.53074 · doi:10.1007/BF02098485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.