×

A modified tanh-coth method for solving the general Burgers-Fisher and the Kuramoto-Sivashinsky equations. (English) Zbl 1221.35320

Summary: In this work we use a modified tanh-coth method to solve the general Burgers-Fisher and the Kuramoto-Sivashinsky equations. The main idea is to take full advantage of the Riccati equation that the tanh-function satisfies. New multiple travelling wave solutions are obtained for the general Burgers-Fisher and the Kuramoto-Sivashinsky equations.

MSC:

35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)

Software:

ATFM
Full Text: DOI

References:

[1] Parkes, E. J.; Duffy, B. R., An automated tanh-function method for finding solitary wave solutions nonlinear evolution equations, Comput Phys Commun, 98, 288-300 (1996) · Zbl 0948.76595
[2] Fan, E. G., Extended tanh-function method and its applications to nonlinear equations, Phys Lett A, 277, 212-218 (2000) · Zbl 1167.35331
[3] El-Wakil, S. A.; Abdou, M. A., Modified extended tanh-function method for solving nonlinear partial differential equations, Chaos, Soliton and Fractals, 31, 1256-1264 (2007) · Zbl 1139.35389
[4] Conte, R., Exact solutions of nonlinear partial differential equations by singularity analysis, (Lecture notes in physics (2003), Springer), p. 1-83 · Zbl 1060.35001
[5] Rademacher, J.; Wattenberg, R., Viscous shocks in the destablized Kuramoto-Sivashinsky, J Comput Nonlinear Dynam, 1, 336-347 (2006)
[6] Gardner, C. S.; Green, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys Rev Lett, 19, 1095-1097 (1967) · Zbl 1061.35520
[7] Mel’nikov, V. K., On equations solvable by the inverse scattering method for the Dirac operator, Commun Nonlinear Sci Numer Simul, 8, 9-36 (2003) · Zbl 1028.37042
[8] Liu, X. Q.; Jiang, S.; Fan, W. B.; Liu, W. M., Soliton solutions in linear magnetic field and time-dependent laser field, Commun Nonlinear Sci Numer Simul, 9, 361-365 (2004) · Zbl 1109.78321
[9] Hirota, R., Exact solution of Korteweg-de Vries equation for multiple collisions of solitons, Phys Rev Lett, 27, 1192-1194 (1971) · Zbl 1168.35423
[10] Tanoğlu, G., Solitary wave solution of nonlinear multi-dimensional wave equation by bilinear transformation method, Commun Nonlinear Sci Numer Simul, 12, 1195-1201 (2007) · Zbl 1350.35175
[11] Malfeit, W., Solitary wave solutions of nonlinear wave equations, Am J Phys, 60, 650-654 (1992) · Zbl 1219.35246
[12] Wazwaz, A. M., New solitons and kinks solutions for the Gardner equation, Commun Nonlinear Sci Numer Simul, 12, 1395-1404 (2007) · Zbl 1118.35352
[13] Yan, C. T., A simple transformation for nonlinear waves, Phys Lett A, 244, 77-84 (1996) · Zbl 1037.35504
[14] Wazwaz, A. M., Analytic study for fifth-order KdV-type equations with arbitrary power nonlinearities, Commun Nonlinear Sci Numer Simul, 12, 904-909 (2007) · Zbl 1111.35316
[15] Wadati, M.; Sanuki, H.; Konno, K., Relationships among inverse method, backlund transformation and an infinite number of conservation laws, Prog Theor Phys, 53, 419-436 (1975) · Zbl 1079.35506
[16] Yan, Z.; Zhang, H., Buckland transformation and exact solutions for (2+1)-dimensional Kolmogoroff-Petrovesky-Piscounov equation, Commun Nonlinear Sci Numer Simul, 4, 146-151 (1999) · Zbl 0924.35135
[17] Wang, M. L., Exact solutions for compound KdV-Burgers equation, Phys Lett A, 213, 279-287 (1996) · Zbl 0972.35526
[18] Yan, Z. Y.; Zhang, H. Q., New explicit solitary solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water, Phys Lett A, 285, 355-362 (2001) · Zbl 0969.76518
[19] Matveev, V. A.; Salle, M. A., Darboux transformations and solitons (1991), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0744.35045
[20] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Expansion about the Jacobi elliptic function and its applications to nonlinear wave solutions, Acta Phys Sinica, 50, 2068-2072 (2001) · Zbl 1202.35237
[21] Fan, E. G.; Zhang, H. Q., A note on the homogeneous balance method, Phys Lett A, 246, 403-406 (1998) · Zbl 1125.35308
[22] Fan, E. G., Extended tanh-function method and its applications to nonlinear equations, Phys Lett A, 277, 212-218 (2000) · Zbl 1167.35331
[23] Wazwaz, A. M., The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equation, Commun Nonlinear Sci Numer Simul, 13, 584-592 (2008) · Zbl 1155.35446
[24] Wazwaz, A. M., New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun Nonlinear Sci Numer Simul, 13, 889-901 (2008) · Zbl 1221.35372
[25] Wazwaz, A. M., The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun Nonlinear Sci Numer Simul, 13, 1039-1047 (2008) · Zbl 1221.35373
[26] Wazwaz, A. M., The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl Math Comput, 188, 1467-1475 (2007) · Zbl 1119.65100
[27] El-Wakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R., Modified extended tanh-function method and its applications to nonlinear equations, Appl Math Comput, 161, 403-412 (2005) · Zbl 1062.35082
[28] El-Wakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R., Modified extended tanh-function method for solving nonlinear partial differential equations, Phys Lett A, 299, 179-188 (2002) · Zbl 0996.35043
[29] Soliman, A. A., The modified extended tanh-function method for solving Burgers-type equations, Physics A, 361, 394-404 (2006)
[30] Chen, H.; Zhang, H., New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivanshinsky equation, Choas, Soliton and Fractals, 19, 71-76 (2004) · Zbl 1068.35126
[31] Wazwaz, A. M., The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations, Appl Math Comput, 169, 321-338 (2005) · Zbl 1121.65359
[32] Wazwaz, A. M., New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations, Appl Math Comput, 182, 1642-1650 (2006) · Zbl 1107.65094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.