×

Positive solutions of one-dimensional \(p\)-Laplacian boundary value problems for fourth-order differential equations with deviating arguments. (English) Zbl 1221.34063

Summary: This paper considers the existence of positive solutions of four-point boundary value problems for fourth-order ordinary differential equations with deviating arguments and \(p\)-Laplacian. We discuss such problems in the cases when the deviating arguments are delayed or advanced, what may concern optimization issues related to some technical problems. To obtain the existence results, a fixed-point theorem for cones due to Avery and Peterson is applied. According to the author’s knowledge, the results are new. It is a first paper where a fixed-point theorem for cones is applied to fourth-order differential equations with deviating arguments and \(p\)-Laplacian. An example is included to verify the theoretical results.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34K10 Boundary value problems for functional-differential equations
Full Text: DOI

References:

[1] Bai, D., Xu, Y.: Existence of positive solutions for boundary value problem of second-order delay differential equations. Appl. Math. Lett. 18, 621–630 (2005) · Zbl 1080.34048 · doi:10.1016/j.aml.2004.07.022
[2] Du, B., Hu, X., Ge, W.: Positive solutions to a type of multi-point boundary value problem with delay and one-dimensional p-Laplacian. Appl. Math. Comput. 208, 501–510 (2009) · Zbl 1170.34046 · doi:10.1016/j.amc.2008.12.020
[3] Jankowski, T.: Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments. Appl. Math. Comput. 197, 179–189 (2008) · Zbl 1145.34355 · doi:10.1016/j.amc.2007.07.081
[4] Jankowski, T.: Positive solutions to second order four-point boundary value problems for impulsive differential equations. Appl. Math. Comput. 202, 550–561 (2008) · Zbl 1255.34025 · doi:10.1016/j.amc.2008.02.040
[5] Jankowski, T.: Existence of positive solutions to second order four-point impulsive differential problems with deviating arguments. Comput. Math. Appl. 58, 805–817 (2009) · Zbl 1189.34128 · doi:10.1016/j.camwa.2009.06.001
[6] Jiang, D.: Multiple positive solutions for boundary value problems of second-order delay differential equations. Appl. Math. Lett. 15, 575–583 (2002) · Zbl 1011.34055 · doi:10.1016/S0893-9659(02)80009-X
[7] Khan, R.A., Webb, J.R.L.: Existence of at least three solutions of a second-order three-point boundary value problem. Nonlinear Anal. 64, 1356–1366 (2006) · Zbl 1101.34005 · doi:10.1016/j.na.2005.06.040
[8] Sun, B., Qu, Y., Ge, W.: Existence and iteration of positive solutions for a multipoint one-dimensional p-Laplacian boundary value problem. Appl. Math. Comput. 197, 389–398 (2008) · Zbl 1141.65063 · doi:10.1016/j.amc.2007.07.071
[9] Wang, W., Sheng, J.: Positive solutions to a multi-point boundary value problem with delay. Appl. Math. Comput. 188, 96–102 (2007) · Zbl 1125.34333 · doi:10.1016/j.amc.2006.09.093
[10] Wang, Y., Zhao, W., Ge, W.: Multiple positive solutions for boundary value problems of second order delay differential equations with one-dimensional p-Laplacian. J. Math. Anal. Appl. 326, 641–654 (2007) · Zbl 1119.34050 · doi:10.1016/j.jmaa.2006.03.028
[11] Yang, C., Zhai, C., Yan, J.: Positive solutions of the three-point boundary value problem for second order differential equations with an advanced argument. Nonlinear Anal. 65, 2013–2023 (2006) · Zbl 1113.34048 · doi:10.1016/j.na.2005.11.003
[12] Graef, J., Kong, L.: Necessary and sufficient conditions for the existence of symmetric positive solutions of singular boundary value problems. J. Math. Anal. Appl. 331, 1467–1484 (2007) · Zbl 1119.34017 · doi:10.1016/j.jmaa.2006.09.046
[13] Graef, J.R., Qian, C., Yang, B.: A three point boundary value problem for nonlinear fourth order differential equations. J. Math. Anal. Appl. 287, 217–233 (2003) · Zbl 1054.34038 · doi:10.1016/S0022-247X(03)00545-6
[14] Bai, Z., Wang, H.: On the positive solutions of some nonlinear fourth-order beam equations. J. Math. Anal. Appl. 270, 357–368 (2002) · Zbl 1006.34023 · doi:10.1016/S0022-247X(02)00071-9
[15] Wei, Z., Pang, C.: The method of lower and upper solutions for fourth order singular m-point boundary value problems. J. Math. Anal. Appl. 322, 675–692 (2006) · Zbl 1112.34010 · doi:10.1016/j.jmaa.2005.09.064
[16] Zhang, X., Liu, L.: Positive solutions of fourth-order four-point boundary value problems with p–Laplacian operator. J. Math. Anal. Appl. 336, 1414–1423 (2007) · Zbl 1125.34018 · doi:10.1016/j.jmaa.2007.03.015
[17] Zhang, X., Liu, L.: A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with p-Laplacian. Nonlinear Anal. 68, 3127–3137 (2008) · Zbl 1143.34016 · doi:10.1016/j.na.2007.03.006
[18] Zhao, J., Wang, L., Ge, W.: Necessary and sufficient conditions for the existence of positive solutions of fourth order multi-point boundary value problems. Nonlinear Anal. 72, 822–835 (2010) · Zbl 1200.34026 · doi:10.1016/j.na.2009.07.036
[19] Zhang, X., Feng, M., Ge, W.: Symmetric positive solutions for p-Laplacian fourth-order differential equations with integral boundary conditions. J. Comput. Appl. Math. 222, 561–573 (2008) · Zbl 1158.34012 · doi:10.1016/j.cam.2007.12.002
[20] Avery, R.I., Peterson, A.C.: Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 42, 313–322 (2001) · Zbl 1005.47051 · doi:10.1016/S0898-1221(01)00156-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.