×

Logarithmically complete monotonicity properties relating to the gamma function. (English) Zbl 1221.33008

Summary: We prove that the function \(f_{\alpha,\beta}(x) = \Gamma^{\beta}(x + \alpha) / x^{\alpha}{\Gamma}({\beta}x)\) is strictly logarithmically completely monotonic on \((0, \infty)\) if \((\alpha, \beta) \in \{(\alpha, \beta) : 1/\root \of{\alpha} \leq {\beta} \leq 1, {\alpha} \neq 1\} \cup \{(\alpha, \beta) : 0 < {\beta} \leq 1, \varphi_1 (\alpha, \beta) \geq 0, \varphi_2 (\alpha, \beta) \geq 0\}\) and \([f_{\alpha,\beta}(x)]^{-1}\) is strictly logarithmically completely monotonic on \((0, \infty)\) if \((\alpha, \beta) \in \{(\alpha, \beta) : 0 < {\alpha} \leq 1/2, 0 < {\beta} \leq 1\} \cup \{(\alpha, \beta) : 1 \leq {\beta} \leq 1/\root \of{\alpha} \leq \root \of{2}, {\alpha} \neq 1\} \cup \{(\alpha, \beta) : 1/2 \leq {\alpha} < 1, {\beta} \geq 1/(1 - \alpha)\}\), where \(\varphi_1 (\alpha, \beta) = (\alpha^2 + \alpha - 1){\beta}^2 + (2{\alpha}^2 - 3{\alpha} + 1){\beta} - {\alpha}\) and \(\varphi_2(\alpha, \beta) = (\alpha - 1){\beta}^2 + (2\alpha^2 - 5\alpha + 2){\beta} - 1\).

MSC:

33B15 Gamma, beta and polygamma functions

References:

[1] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, New York, NY, USA, 1962. · Zbl 0951.30002
[2] Y.-M. Chu, X.-M. Zhang, and Zh.-H Zhang, “The geometric convexity of a function involving gamma function with applications,” Korean Mathematical Society, vol. 25, no. 3, pp. 373-383, 2010. · Zbl 1210.26023 · doi:10.4134/CKMS.2010.25.3.373
[3] X.-M. Zhang and Y.-M. Chu, “A double inequality for gamma function,” Journal of Inequalities and Applications, vol. 2009, Article ID 503782, 7 pages, 2009. · Zbl 1176.33002 · doi:10.1155/2009/503782
[4] T.-H. Zhao, Y.-M. Chu, and Y.-P. Jiang, “Monotonic and logarithmically convex properties of a function involving gamma functions,” Journal of Inequalities and Applications, vol. 2009, Article ID 728612, 13 pages, 2009. · Zbl 1176.33003 · doi:10.1155/2009/728612
[5] X.-M. Zhang and Y.-M. Chu, “An inequality involving the gamma function and the psi function,” International Journal of Modern Mathematics, vol. 3, no. 1, pp. 67-73, 2008. · Zbl 1153.33305
[6] Y.-M. Chu, X.-M. Zhang, and X.-M. Tang, “An elementary inequality for psi function,” Bulletin of the Institute of Mathematics, vol. 3, no. 3, pp. 373-380, 2008. · Zbl 1172.33301
[7] Y.-Q. Song, Y.-M. Chu, and L.-L. Wu, “An elementary double inequality for gamma function,” International Journal of Pure and Applied Mathematics, vol. 38, no. 4, pp. 549-554, 2007. · Zbl 1132.33303
[8] B.-N. Guo and F. Qi, “Two new proofs of the complete monotonicity of a function involving the psi function,” Bulletin of the Korean Mathematical Society, vol. 47, no. 1, pp. 103-111, 2010. · Zbl 1183.33002 · doi:10.4134/BKMS.2010.47.1.103
[9] Ch.-P. Chen, F. Qi, and H. M. Srivastava, “Some properties of functions related to the gamma and psi functions,” Integral Transforms and Special Functions, vol. 21, no. 1-2, pp. 153-164, 2010. · Zbl 1188.33003 · doi:10.1080/10652460903064216
[10] F. Qi, “A completely monotonic function involving the divided difference of the psi function and an equivalent inequality involving sums,” The Australian & New Zealand Industrial and Applied Mathematics Journal, vol. 48, no. 4, pp. 523-532, 2007. · Zbl 1131.33002 · doi:10.1017/S1446181100003199
[11] F. Qi and B.-N. Guo, “Monotonicity and convexity of ratio between gamma functions to different powers,” Journal of the Indonesian Mathematical Society, vol. 11, no. 1, pp. 39-49, 2005. · Zbl 1068.33002
[12] C.-P. Chen and F. Qi, “Inequalities relating to the gamma function,” The Australian Journal of Mathematical Analysis and Applications, vol. 1, no. 1, Article ID 3, 7 pages, 2004. · Zbl 1062.33001
[13] B.-N. Guo and F. Qi, “Inequalities and monotonicity for the ratio of gamma functions,” Taiwanese Journal of Mathematics, vol. 7, no. 2, pp. 239-247, 2003. · Zbl 1050.26012
[14] F. Qi, “Monotonicity results and inequalities for the gamma and incomplete gamma functions,” Mathematical Inequalities & Applications, vol. 5, no. 1, pp. 61-67, 2002. · Zbl 1006.33001
[15] F. Qi and J.-Q. Mei, “Some inequalities of the incomplete gamma and related functions,” Zeitschrift für Analysis und ihre Anwendungen, vol. 18, no. 3, pp. 793-799, 1999. · Zbl 0934.33001 · doi:10.4171/ZAA/914
[16] F. Qi and S.-L. Guo, “Inequalities for the incomplete gamma and related functions,” Mathematical Inequalities & Applications, vol. 2, no. 1, pp. 47-53, 1999. · Zbl 0916.33001
[17] H. Alzer, “Some gamma function inequalities,” Mathematics of Computation, vol. 60, no. 201, pp. 337-346, 1993. · Zbl 0802.33001 · doi:10.2307/2153171
[18] H. Alzer, “On some inequalities for the gamma and psi functions,” Mathematics of Computation, vol. 66, no. 217, pp. 373-389, 1997. · Zbl 0854.33001 · doi:10.1090/S0025-5718-97-00807-7
[19] G. D. Anderson and S.-L. Qiu, “A monotoneity property of the gamma function,” Proceedings of the American Mathematical Society, vol. 125, no. 11, pp. 3355-3362, 1997. · Zbl 0881.33001 · doi:10.1090/S0002-9939-97-04152-X
[20] D. Kershaw, “Some extensions of W. Gautschi’s inequalities for the gamma function,” Mathematics of Computation, vol. 41, no. 164, pp. 607-611, 1983. · Zbl 0536.33002 · doi:10.2307/2007697
[21] M. Merkle, “Logarithmic convexity and inequalities for the gamma function,” Journal of Mathematical Analysis and Applications, vol. 203, no. 2, pp. 369-380, 1996. · Zbl 0860.33001 · doi:10.1006/jmaa.1996.0385
[22] B. Palumbo, “A generalization of some inequalities for the gamma function,” Journal of Computational and Applied Mathematics, vol. 88, no. 2, pp. 255-268, 1998. · Zbl 0902.33002 · doi:10.1016/S0377-0427(97)00187-8
[23] H. Alzer and Ch. Berg, “Some classes of completely monotonic functions II,” The Ramanujan Journal, vol. 11, no. 2, pp. 225-248, 2006. · Zbl 1110.26015 · doi:10.1007/s11139-006-6510-5
[24] H. Alzer, “Sharp inequalities for the digamma and polygamma functions,” Forum Mathematicum, vol. 16, no. 2, pp. 181-221, 2004. · Zbl 1048.33001 · doi:10.1515/form.2004.009
[25] H. Alzer and N. Batir, “Monotonicity properties of the gamma function,” Applied Mathematics Letters, vol. 20, no. 7, pp. 778-781, 2007. · Zbl 1135.33300 · doi:10.1016/j.aml.2006.08.026
[26] W. E. Clark and M. E. H. Ismail, “Inequalities involving gamma and psi functions,” Analysis and Applications, vol. 1, no. 1, pp. 129-140, 2003. · Zbl 1042.33002 · doi:10.1142/S0219530503000041
[27] Á. Elbert and A. Laforgia, “On some properties of the gamma function,” Proceedings of the American Mathematical Society, vol. 128, no. 9, pp. 2667-2673, 2000. · Zbl 0949.33001 · doi:10.1090/S0002-9939-00-05520-9
[28] J. Bustoz and M. E. H. Ismail, “On gamma function inequalities,” Mathematics of Computation, vol. 47, no. 176, pp. 659-667, 1986. · Zbl 0607.33002 · doi:10.2307/2008180
[29] M. E. H. Ismail, L. Lorch, and M. E. Muldoon, “Completely monotonic functions associated with the gamma function and its q-analogues,” Journal of Mathematical Analysis and Applications, vol. 116, no. 1, pp. 1-9, 1986. · Zbl 0589.33001 · doi:10.1016/0022-247X(86)90042-9
[30] V. F. Babenko and D. S. Skorokhodov, “On Kolmogorov-type inequalities for functions defined on a semi-axis,” Ukrainian Mathematical Journal, vol. 59, no. 10, pp. 1299-1312, 2007. · Zbl 1164.41319 · doi:10.1007/s11253-008-0001-3
[31] M. E. Muldoon, “Some monotonicity properties and characterizations of the gamma function,” Aequationes Mathematicae, vol. 18, no. 1-2, pp. 54-63, 1978. · Zbl 0386.33001 · doi:10.1007/BF01844067
[32] F. Qi, Q. Yang, and W. Li, “Two logarithmically completely monotonic functions connected with gamma function,” Integral Transforms and Special Functions, vol. 17, no. 7, pp. 539-542, 2006. · Zbl 1093.33001 · doi:10.1080/10652460500422379
[33] F. Qi, D.-W. Niu, and J. Cao, “Logarithmically completely monotonic functions involving gamma and polygamma functions,” Journal of Mathematical Analysis and Approximation Theory, vol. 1, no. 1, pp. 66-74, 2006. · Zbl 1113.33005
[34] F. Qi, Sh.-X. Chen, and W.-S. Cheung, “Logarithmically completely monotonic functions concerning gamma and digamma functions,” Integral Transforms and Special Functions, vol. 18, no. 6, pp. 435-443, 2007. · Zbl 1120.33003 · doi:10.1080/10652460701318418
[35] F. Qi, “A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw’s double inequality,” Journal of Computational and Applied Mathematics, vol. 206, no. 2, pp. 1007-1014, 2007. · Zbl 1113.33004 · doi:10.1016/j.cam.2006.09.005
[36] C.-P. Chen and F. Qi, “Logarithmically complete monotonicity properties for the gamma functions,” The Australian Journal of Mathematical Analysis and Applications, vol. 2, no. 2, Article ID 8, 9 pages, 2005. · Zbl 1090.33002
[37] Ch.-P. Chen and F. Qi, “Logarithmically completely monotonic functions relating to the gamma function,” Journal of Mathematical Analysis and Applications, vol. 321, no. 1, pp. 405-411, 2006. · Zbl 1099.33002 · doi:10.1016/j.jmaa.2005.08.056
[38] M. Merkle, “On log-convexity of a ratio of gamma functions,” Univerzitet u Beogradu. Publikacije Elektrotehni\vckog Fakulteta. Serija Matematika, vol. 8, pp. 114-119, 1997. · Zbl 0884.33003
[39] C.-P. Chen, “Complete monotonicity properties for a ratio of gamma functions,” Univerzitet u Beogradu. Publikacije Elektrotehni\vckog Fakulteta. Serija Matematika, vol. 16, pp. 26-28, 2005. · Zbl 1150.33300 · doi:10.2298/PETF0516026C
[40] A.-J. Li and Ch.-P. Chen, “Some completely monotonic functions involving the gamma and polygamma functions,” Journal of the Korean Mathematical Society, vol. 45, no. 1, pp. 273-287, 2008. · Zbl 1132.33301 · doi:10.4134/JKMS.2008.45.1.273
[41] F. Qi, D. Niu, J. Cao, and S. Chen, “Four logarithmically completely monotonic functions involving gamma function,” Journal of the Korean Mathematical Society, vol. 45, no. 2, pp. 559-573, 2008. · Zbl 1151.33301 · doi:10.4134/JKMS.2008.45.2.559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.