×

Iteration functions for \(p\)th roots of complex numbers. (English) Zbl 1221.30065

Summary: A novel way of generating higher-order iteration functions for the computation of the \(p\)th roots of complex numbers is the main contribution of the present work. The behavior of some of these iteration functions is analyzed, and conditions on the starting values that guarantee convergence are stated. The illustration of the basins of attractions of the \(p\)th roots are carried out by some computer generated plots. In order to compare the performance of the iterations some numerical examples are considered.

MSC:

30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
11A07 Congruences; primitive roots; residue systems
Full Text: DOI

References:

[1] Amat, S., Bermúdez, C., Busquier, S., Leauthier, P., Plaza, S.: On the dynamics of some Newton’s type iterative functions. Int. J. Comput. Math. 86(4), 631–639 (2009) · Zbl 1165.65341 · doi:10.1080/00207160701671854
[2] Bini, D.A., Higham, N.J., Meini, B.: Algorithms for the matrix pth root. Numer. Algorithms 39, 349–378 (2005) · Zbl 1103.65046 · doi:10.1007/s11075-004-6709-8
[3] Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11, 85–141 (1984) · Zbl 0558.58017 · doi:10.1090/S0273-0979-1984-15240-6
[4] Buff, X., Henriksen, C.: On König’s root-finding algorithms. Nonlinearity 16, 989–1015 (2003) · Zbl 1030.37030 · doi:10.1088/0951-7715/16/3/312
[5] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974) · Zbl 0283.05001
[6] Curry, J.H., Garnett, L., Sullivan, D.: On the iteration of a rational function: computer experiments with Newton’s method. Commun. Math. Phys. 91, 267–277 (1983) · Zbl 0524.65032 · doi:10.1007/BF01211162
[7] di Bruno, F.: Traité de l’Élimination. Paris (1859)
[8] Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. Fr. 47, 161–271 (1919); Bull. Soc. Math. Fr. 48, 33–94, 208–314 (1920) · JFM 47.0921.02
[9] Guo, C.-H., Higham, N.J.: A Schur–Newton method for the matrix pth root and its inverse. SIAM J. Matrix Anal. Appl. 28, 788–804 (2006) · Zbl 1128.65030 · doi:10.1137/050643374
[10] Guo, C.-H.: On Newton’s method and Halley’s method for the principal pth root of a matrix. Linear Algebra Appl. 432, 1905–1922 (2010) · Zbl 1190.65065 · doi:10.1016/j.laa.2009.02.030
[11] Householder, A.S.: The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill, New York (1970) · Zbl 0242.65047
[12] Iannazzo, B.: On the Newton method for the matrix pth root. SIAM J. Matrix Anal. Appl. 28, 503–523 (2006) · Zbl 1113.65054 · doi:10.1137/050624790
[13] Iannazzo, B.: A family of rational iterations and its applications to the computation of the matrix pth root. SIAM J. Matrix Anal. Appl. 30, 1445–1462 (2008) · Zbl 1176.65054 · doi:10.1137/070694351
[14] Julia, G.: Memoire sur l’iteration des fonctions rationelles. J. Math. Pures Appl. 8, 47–245 (1918) · JFM 46.0520.06
[15] Lakic, S.: On the computation of the matrix k-th root. Z. Angew. Math. Mech. 78, 167–172 (1998) · Zbl 0906.65046 · doi:10.1002/(SICI)1521-4001(199803)78:3<167::AID-ZAMM167>3.0.CO;2-R
[16] Laszkiewicz, B., Zietak, K.: A Padé family of iterations for the matrix sector function and the matrix pth root. Numer. Linear Algebra Appl. 16, 951–970 (2009) · Zbl 1224.65123 · doi:10.1002/nla.656
[17] Lin, M.: A residual recurrence for Halley’s method for the matrix pth. Linear Algebra Appl. 432, 2928–2930 (2010) · Zbl 1190.65070 · doi:10.1016/j.laa.2009.12.035
[18] Riordan, J.: Combinatorial Identities. Wiley, New York (1968)
[19] Roberts, G.E., Kobelski, J.H.: Newton’s versus Halley’s method: an approach via complex dynamics. Int. J. Bifurc. Chaos 14, 1–17 (2004) · Zbl 1063.65082 · doi:10.1142/S0218127404009211
[20] Schröder, E.: Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870). English translation by G.W. Stewart: E. Schröder, On infinitely many algorithms for solving equations (1993) · JFM 02.0042.02 · doi:10.1007/BF01444024
[21] Smith, R.A.: Infinite product expansions for matrix n-th roots. J. Aust. Math. Soc. 8, 242–249 (1968) · Zbl 0157.22604 · doi:10.1017/S1446788700005309
[22] Traub, J.F.: Iterative Methods for Solution of Equations. Prentice-Hall, Englewood Cliffs (1964) · Zbl 0121.11204
[23] Vrscay, E.R.: Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iterative maps: a computer assisted study. Math. Comput. 46, 151–169 (1986) · Zbl 0597.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.