×

On the number of exceptional elements of an additive basis. (Sur le nombre d’éléments exceptionnels d’une base additive.) (French) Zbl 1221.11201

In [J. Reine Angew. Math. 539, 45–53 (2001; Zbl 1002.11011)] B. Deschamps and G. Grekos studied asymptotically (when \(h\) tends to infinity) the quantity \(E(h)\), introduced by Erdős and Graham, and defined as the maximal number of elements which are necessary to the basicity of an additive basis of order \(h\). They showed that the maximal order of this function is \((h/\log h)^{1/2}\).
Here the authors show that \(E\) does not have oscillations but, to the contrary, possesses a regular asymptotic behaviour, that is determined explicitly. More precisely, they prove that \(E(h)\sim 2(h/\log h)^{1/2}\).

MSC:

11N37 Asymptotic results on arithmetic functions
11B13 Additive bases, including sumsets

Citations:

Zbl 1002.11011
Full Text: DOI

References:

[1] DOI: 10.1007/BF02189086 · Zbl 0666.10035 · doi:10.1007/BF02189086
[2] Baker R. C., London Math. Soc. Lect. Notes 237 pp 1– (1997)
[3] DOI: 10.1090/S0002-9939-04-07344-7 · Zbl 1051.11011 · doi:10.1090/S0002-9939-04-07344-7
[4] Grekos B., Math. 539 pp 45– (2001)
[5] P., Acta Arith. 37 pp 201– (1980)
[6] P., Enseign. Math. 28 pp 30– (1980)
[7] DOI: 10.1016/0012-365X(93)90367-3 · Zbl 0849.11015 · doi:10.1016/0012-365X(93)90367-3
[8] Grekos G., Acta Math. Inform. Univ. Ostraviensis 6 pp 87– (1998)
[9] D., Math. 389 pp 22– (1988)
[10] Hoheisel G., Sitz. Preuß. Akad. Wiss. 2 pp 1– (1930)
[11] DOI: 10.1007/BF01418933 · Zbl 0241.10026 · doi:10.1007/BF01418933
[12] DOI: 10.1006/jnth.1993.1027 · Zbl 0780.11007 · doi:10.1006/jnth.1993.1027
[13] DOI: 10.1006/jnth.2000.2592 · Zbl 1067.11005 · doi:10.1006/jnth.2000.2592
[14] Plagne A., Ann. Inst. Fourier (Grenoble) 54 pp 1717– (2004)
[15] Plagne A., Gac. R. Soc. Mat. Esp. 9 pp 191– (2006)
[16] DOI: 10.1006/jnth.1994.1062 · Zbl 0808.11011 · doi:10.1006/jnth.1994.1062
[17] Stöhr A., Math. 194 pp 40– (1955)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.