×

Terai’s conjecture on exponential Diophantine equations. (English) Zbl 1221.11092

Let \(m\), \(r\) be positive integers with \(r\geq 2\) and \(m\) even. Define integers \(A\) and \(B\) by \(A+B\sqrt{-1}=(m+\sqrt{-1})^r\). The author proves that the equation \(| A| ^x+| B| ^y=(m^2+1)^z\) has unique solution \((x,y,z)\) in positive integers, provided that either \(r\equiv 4 \pmod 8\) or \(r\equiv 6 \pmod 8\) and \(m^2/\log (m^2+1)\geq r^3 / \log 2\).
The proof is based on a study of small divisors of the components of a solution. Using various results on generalized Fermat equations, sharp bounds for solutions are obtained. Most of the candidate solutions are thereafter excluded by relating them to rational points on suitable elliptic curves or by computing Jacobi symbols.

MSC:

11D61 Exponential Diophantine equations
11D41 Higher degree equations; Fermat’s equation
11A07 Congruences; primitive roots; residue systems

Software:

ecdata
Full Text: DOI

References:

[1] DOI: 10.1215/S0012-7094-98-09105-0 · Zbl 1038.11505 · doi:10.1215/S0012-7094-98-09105-0
[2] Bilu Y., J. Reine Angew. Math. 539 pp 75–
[3] DOI: 10.4153/CJM-2004-002-2 · Zbl 1053.11025 · doi:10.4153/CJM-2004-002-2
[4] DOI: 10.1023/A:1001529706709 · Zbl 0941.11013 · doi:10.1023/A:1001529706709
[5] DOI: 10.1007/10722028_9 · doi:10.1007/10722028_9
[6] Bruin N., J. Reine Angew. Math. 562 pp 27–
[7] Cao Z. F., Acta Arith. 91 pp 85–
[8] Cao Z. F., Publ. Math. Debrecen 22 pp 1–
[9] DOI: 10.4064/aa110-2-5 · Zbl 1031.11020 · doi:10.4064/aa110-2-5
[10] H. Cohen, Number Theory-Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics (Springer-Verlag, 2007) pp. 484–485.
[11] DOI: 10.4064/aa140-3-3 · Zbl 1235.11031 · doi:10.4064/aa140-3-3
[12] Cremona J., Algorithms for Modular Elliptic Curves (1992) · Zbl 0758.14042
[13] DOI: 10.1112/blms/27.6.513 · Zbl 0838.11023 · doi:10.1112/blms/27.6.513
[14] Darmon H., J. Reine. Angew. Math. 490 pp 81–
[15] Edwards J., J. Reine Angew. Math. 571 pp 213–
[16] Gel’fond A. O., Mat. Sb. 7 pp 7–
[17] Hu Z.-Y., Acta Math. Sinica (Chin. Ser.) 48 pp 1175–
[18] DOI: 10.4064/aa108-4-3 · Zbl 1026.11035 · doi:10.4064/aa108-4-3
[19] Jeśmanowicz L., Wiadom. Mat. 1 pp 196–
[20] DOI: 10.4064/aa106-4-2 · Zbl 1023.11013 · doi:10.4064/aa106-4-2
[21] Le M.-H., Publ. Math. Debrecen 68 pp 283–
[22] Le M.-H., Acta Math. Sinica (Chin. Ser.) 51 pp 677–
[23] Lu W. T., Acta Sci. Natur. Univ. Szechuan 2 pp 39–
[24] DOI: 10.1007/BF01448915 · Zbl 0006.10502 · doi:10.1007/BF01448915
[25] DOI: 10.1007/BF02589518 · Zbl 0083.03902 · doi:10.1007/BF02589518
[26] Poonen B., Acta Arith. 86 pp 193–
[27] DOI: 10.5802/jtnb.429 · Zbl 1074.11022 · doi:10.5802/jtnb.429
[28] DOI: 10.3792/pjaa.70.22 · Zbl 0812.11024 · doi:10.3792/pjaa.70.22
[29] Terai N., Acta Arith. 90 pp 17–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.